
 

 



 

 

 

1 a. Define Data Structures. 

Data structure is a representation of the logical relationships existing between individual elements of 

data. A data structure is a way of organizing all data items that considers not only the elements stored but also 

their relationship to each other. 

A data structure is a way to organize, store, and manage data efficiently for use in algorithms and 

computations. Examples include arrays, linked lists, stacks, queues, trees, and graphs, each designed to handle 

specific types of data operations and access patterns. 

 

 



 

1 b. Explain the classification of Data Structures with example. 

 

 

Figure: Classification of Data Structures 

Types of Data Structures 

1. Linear Data Structures 

Linear data structures organize data sequentially, where elements are arranged one after the other. 

1. Array : A collection of elements of the same data type stored in contiguous memory locations. 

Example: Storing marks of 5 students. 

2. Linked List: A collection of nodes, where each node contains data and a reference (or link) to the next 

node in the sequence. 

Example: Managing dynamic lists like playlists or to-do lists. 

3. Stack: A collection of elements following the Last In First Out (LIFO) principle. 

Example: Undo operation in a text editor. 

4. Queue: A collection of elements following the First In First Out (FIFO) principle. 

Example: Managing tasks in a printer queue. 

2. Non-Linear Data Structures 

Non-linear data structures allow hierarchical relationships among elements. 

1. Tree: A hierarchical structure where each node is connected to children nodes. A tree starts with a root 

node. 

Example: Representing file systems or organizational hierarchies. 

2. Graph: A collection of nodes (vertices) connected by edges. Can be directed or undirected. 

Example: Representing social networks or roadmaps. 

3.  Hash Table: A data structure that maps keys to values for efficient lookup using a hash function. 

Example: Implementing dictionaries or caches. 



Primitive Operations on Data Structures 

1. Insertion : Adding a new element to the data structure. 

 Example: Adding 5 to an array.  

array = [1, 2, 3, 4] 

array.append(5)   

Output: [1, 2, 3, 4, 5] 

2. Deletion : Removing an element from the data structure. 

 Example: Deleting 3 from a linked list.  

linked_list = [1, 2, 3, 4] 

linked_list.remove(3)   

Output: [1, 2, 4] 

3. Traversal : Accessing each element of the data structure sequentially. 

 Example: Traversing an array to print elements.  

array = [1, 2, 3, 4] 

for element in array: 

print(element) 

Output: 1 2 3 4 

4. Search : Finding a specific element in the data structure. 

 Example: Searching for 3 in an array.  

array = [1, 2, 3, 4] 

print(3 in array)   

Output: True 

5. Sorting : Arranging elements in a specific order (ascending/descending). 

 Example: Sorting an array in ascending order.  

array = [4, 1, 3, 2] 

array.sort()   

Output: [1, 2, 3, 4] 

6. Access : Retrieving the value of a specific element by its position or key. 

 Example: Accessing the second element in an array.  

array = [1, 2, 3, 4] 

print(array[1])   

Output: 2 



1 c. Explain all operations of Data Structures. 

1. Traversal 

 Description: Traversal operations are used to visit each node in a data structure in a specific order. 

 Example (Array Traversal): 

array = [1, 2, 3, 4] 

for element in array: 

      print(element)   

Output: 1 2 3 4 

2. Insertion 

 Description: Adding a new element to the data structure. 

 Example (Insert into a List): 

array = [1, 2, 3] 

array.append(4)  # Adds 4 to the end 

print(array)   

Output: [1, 2, 3, 4] 

3. Deletion 

 Description: Removing an element from the data structure. 

 Example (Remove from a List): 

array = [1, 2, 3, 4] 

array.remove(3)  # Removes 3 

print(array)   

Output: [1, 2, 4] 

4. Search 

 Description: Finding whether a specific element exists in the data structure. 

 Example (Search in a List): 

array = [1, 2, 3, 4] 

if 3 in array: 

     print("Found")   

else: 

      print("Not Found") 

Output: Found 

 



5. Sorting 

 Description: Arranging elements in a specific order (ascending or descending). 

 Example (Sort a List): 

array = [4, 2, 3, 1] 

array.sort()  # Sorts in ascending order 

print(array)   

Output: [1, 2, 3, 4] 

2. a. Explain any five string handling functions supported by 'c' with syntax and 10 example. 

1. strlen 

 Description: Determines the length of a string (excluding the null character \0). 

 Syntax:  

size_t strlen(const char *str); 

 Example:  

int main()  

{ 

char str[] = "Hello"; 

printf("Length of the string: %lu\n", strlen(str));  

return 0; 

} 

Output: 5 

2. strcpy 

 Description: Copies the content of one string into another. 

 Syntax:  

char *strcpy(char *dest, const char *src); 

 Example:  

int main()  

{ 

char src[] = "World"; 

char dest[20]; 

strcpy(dest, src); 

printf("Copied string: %s\n", dest);  

return 0; 

} 

Output: World 

 



3. strcat 

 Description: Concatenates (joins) two strings. 

 Syntax:  

char *strcat(char *dest, const char *src); 

 Example:  

int main()  

{ 

char str1[20] = "Hello "; 

char str2[] = "World"; 

strcat(str1, str2); 

printf("Concatenated string: %s\n", str1);  

return 0; 

} 

Output: Hello World 

4. strcmp 

 Description: Compares two strings lexicographically. 

 Syntax:  

int strcmp(const char *str1, const char *str2); 

 Example:  

int main()  

{ 

char str1[] = "Hello"; 

char str2[] = "World"; 

int result = strcmp(str1, str2); 

if (result == 0) 

printf("Strings are equal.\n"); 

else if (result < 0) 

printf("str1 is less than str2.\n");  

else 

printf("str1 is greater than str2.\n"); 

return 0; 

} 

Output: str1 is less than str2. 

5. strrev (Not part of the standard library, but widely available in compilers like Turbo C) 

 Description: Reverses a string. 



 Syntax:  

char *strrev(char *str); 

 Example:  

int main()  

{ 

char str[] = "Hello"; 

printf("Original string: %s\n", str); 

printf("Reversed string: %s\n", strrev(str));  

return 0; 

} 

Output: olleH 

2 b. Convert the following infix expression to postfix expression using stack: A+ (B*C (D/E ^F) G)* H. 

Expression : A+(B*C-(D/E^F) *G) * H 

Symbol Stack Postfix 

A  A 

+ + A 

( +, ( A 

B +, ( AB 

* +, (, * AB 

C +, (, * ABC 

- +, (, - ABC* 

( +, (, -, ( ABC* 

D +, (, -, ( ABC*D 

/ +, (, -, (, / ABC*D 

E +, (, -, (, / ABC*DE 

^ +, (, -, (, /, ^ ABC*DE 

F +, (, -, (, /, ^ ABC*DEF 

) +, (, -, (, /, ^,) ABC*DEF 

 +, (, -, (, /, ^,) ABC*DEF^/ 

* +, (, -, * ABC*DEF^/ 

G +, (, -, * ABC*DEF^/G 

) +, (, -, *,) ABC*DEF^/G*- 

* +,* ABC*DEF^/G*- 

H +,* ABC*DEF^/G*-H 

Final Result  ABC*DEF^/G*-H*+ 

 



3a. List the disadvantages of linear queue and how is it solved in circular queues. Give the algorithm to 

insert and delete an element in circular queues. 

Disadvantages of Linear Queue 

1. Wasted Space: 

 In a linear queue, when elements are dequeued, the freed space at the front of the queue cannot 

be reused, even though it is no longer occupied. 

2. Queue Overflow: 

 Even if there is unused space at the front, the queue may still show as full when the rear pointer 

reaches the maximum size of the array. 

3. Inefficient Memory Utilization: 

 The fixed size of the array in a linear queue can lead to underutilization of memory when 

elements are dequeued. 

How Circular Queue Solves These Issues 

1. Reusability of Space: 

 In a circular queue, the rear pointer wraps around to the beginning of the array when it reaches 

the end, reusing the freed space at the front. 

2. Efficient Memory Utilization: 

 Circular queues use all available space efficiently by reusing the memory locations freed during 

deletions. 

3. No Overflow Until Full: 

 Overflow occurs only when all slots are occupied, regardless of the position of front and rear. 

// Function to insert an item into circular queue // Function to delete an element from queue 

void insert_rear (int item) 

{ 

            // Check for overflow of queue  

            if (count === Q_SIZE) 

           { 

                   printf ("Queue Overflow"); 

                   return; 

           } 

           // Increment rear by 1 

           rear = ( rear + 1) % Q_SIZE; 

          // Insert an item into the queue  

          queue[ rear] = item; 

         // Update count by 1  

         count++; 

} 

void delete_front() 

{ 

           // Check for underflow of queue 

           if (count == 0) 

          { 

              printf ("Queue Underflow"); 

              return; 

          } 

          // Delete the item from circular queue  

         printf ("Item deleted :%d", queue[front]); 

         // Increment front by 1 

         front (front + 1)% Q_SIZE; 

        // Update count by 1 

        count = count - 1; 

} 

 



3b. Explain in detail about multiple queue with relevant functions in 'C'. 

A multiple queue is a data structure where two or more queues are implemented within a single memory array. 

These queues may be used to manage multiple independent data streams or processes efficiently within shared 

storage. 

Advantages of Multiple Queues 

1. Efficient Memory Usage:  

 Avoids allocating separate memory for each queue. 

2. Concurrent Data Management:  

 Useful in situations like CPU scheduling, where different processes have separate 

queues. 

3. Flexibility:  

 Dynamic sharing of memory allows better utilization in some designs. 

Types of Multiple Queues 

1. Fixed-Sized Multiple Queues:  

 Each queue is allocated a fixed size within the array. 

2. Dynamic Multiple Queues:  

 Each queue can grow or shrink dynamically as needed, sharing the array space. 

 In a dynamic implementation, additional logic is required to handle overlapping queues 

or reallocate memory when one queue grows beyond its segment size. This can be 

achieved using linked lists or a dynamic array. 

Implementation of Fixed-Sized Multiple Queues in C 

Structure for Multiple Queues 

#define MAX 100 

typedef struct  

{ 

     int front;     

     int rear;      

    int start;     

     int end;       

} Queue; 

typedef struct  

{ 

     int data[MAX];   

     Queue queues[2];  

} MultiQueue; 



Example Program 

int main()  

{ 

MultiQueue mq; 

int numQueues = 2;  

int segmentSize = MAX / numQueues; 

 

initializeQueues(&mq, numQueues, segmentSize); 

 

// Queue 0 operations 

enqueue(&mq, 0, 10); 

enqueue(&mq, 0, 20); 

enqueue(&mq, 0, 30); 

printf("Queue 0: "); 

displayQueue(&mq, 0); 

 

// Queue 1 operations 

enqueue(&mq, 1, 100); 

enqueue(&mq, 1, 200); 

printf("Queue 1: "); 

displayQueue(&mq, 1); 

 

// Dequeue operations 

printf("Dequeue from Queue 0: %d\n", dequeue(&mq, 0)); 

printf("Queue 0 after dequeue: "); 

displayQueue(&mq, 0); 

 

printf("Dequeue from Queue 1: %d\n", dequeue(&mq, 1)); 

printf("Queue 1 after dequeue: "); 

displayQueue(&mq, 1); 

return 0; 

} 

 

 

 

 

 



4a. Develop a linked list with the basic operations performed on Singly Linked List (SLL) and different 

types of linked list. 

A Singly Linked List (SLL) is a data structure where each element (node) points to the next node in the 

sequence. Each node contains two parts: 

1. Data: Holds the actual data. 

2. Next: Points to the next node in the list (or NULL if it is the last node). 

Basic Operations on Singly Linked List 

The basic operations on a singly linked list are: 

1. Insertion 

 Insert at the beginning 

 Insert at the end 

 Insert after a given node 

2. Deletion 

 Delete the first node 

 Delete the last node 

 Delete a node at a specific position 

3. Traversal 

 Traverse the list to print all elements 

4. Search 

 Search for an element in the list 

5. Reversal 

 Reverse the list 

Types of Linked Lists 

There are three main types of linked lists: 

1. Singly Linked List (SLL): 

 Each node points to the next node. 

2. Doubly Linked List (DLL): 

 Each node contains two pointers: one points to the next node, and the other points 

to the previous node. 

3. Circular Linked List: 

 A variation where the last node points back to the first node, forming a circle. 

 



Insert on element at the front end of SLL Insert on element at the rear end of SLL 

NODE insert_front(int item, NODE first)  

{  

NODE temp;  

temp = getnode();        

temp->info = item;       

temp->link = first;      

return temp;             

} 

NODE insert_rear(int item, NODE first)  

{  

        NODE  temp;   

                 NODE cur;   

        temp = getnode(); 

        temp->info = item;         

        temp->link = NULL;  

  

        if ( first == NULL ) return temp;       

                cur = first;  

       while ( cur->link != NULL )  

       {  

          cur = cur->link;  

        }  

         cur->link = temp;    

       return first;     

} 

 

Delete a node at the beginning of SLL. Delete a node at the end of SLL. 

NODE delete_front(NODE first)  

{  

       NODE temp;  

  

        if ( first == NULL )  

        {  

         printf("List is empty cannot delete\n");  

              return NULL;   

        }  

       temp = first;     

        temp = temp->link  

       printf("Item deleted = %d\n",first->info);   

       free(first);      

       return temp;      

} 

NODE delete_rear(NODE first)  

{  

          NODE cur, prev;  

           if (first == NULL)   

          {  

                   printf(“List is empty cannot delete\n”);  

                  return first;  

          }  

          if ( first ->link == NULL )   

          {  

                  printf (“The item to deleted is 

%d\n”,first->info);  

  

                   free(first);      

                   return NULL;  

          }  

          prev = NULL;  

          cur = first;  

          while( cur->link != NULL )        

          {  

                    prev = cur;  

                    cur = cur->link;  

          }  

           printf(“The item deleted is %d\n”,cur->info);   

         free(cur);     

         prev->link = NULL;   

         return first;    

} 

 



4b. Examine a node structure for linked representation of polynomial. Explain algorithm to add two 

polynomial represented using linked list. 

Linked Representation of Polynomials 

A polynomial can be represented as a sequence of terms where each term has two parts: 

1. Coefficient: The numerical value associated with the term. 

2. Exponent: The power of the variable (usually represented as x). 

In the linked list representation, each node of the linked list can store a term of the polynomial. The 

node structure might include: 

 Coefficient: The numerical coefficient of the term. 

 Exponent: The exponent of the term. 

 Next Pointer: A pointer to the next term in the polynomial. 

Node Structure for Polynomial Linked List 

struct Node  

{ 

     int coefficient;     

     int exponent;        

     struct Node* next;   

}; 

The linked list representation of a polynomial is ordered by exponents in decreasing order. For example, 

the polynomial 5x^3 + 4x^2 + 3x + 2 will be represented as: 

Head -> [5, 3] -> [4, 2] -> [3, 1] -> [2, 0] -> NULL 

Here: 

 Node [5, 3] represents the term 5x^3. 

 Node [4, 2] represents the term 4x^2. 

 Node [3, 1] represents the term 3x. 

 Node [2, 0] represents the constant term 2. 

 

Algorithm to Add Two Polynomials Using Linked List 

The process to add two polynomials involves iterating through both polynomial linked lists, comparing 

the exponents, and combining terms with the same exponent. If the exponents are different, the term 

with the higher exponent is added to the result list. 

Steps: 

1. Initialize two pointers: One for each polynomial (poly1 and poly2). 

2. Iterate through the lists:  



 If the exponent of poly1 is greater than poly2, add the term of poly1 to the result list and 

move poly1 to the next node. 

 If the exponent of poly1 is smaller than poly2, add the term of poly2 to the result list and 

move poly2 to the next node. 

 If the exponents are equal, add the coefficients and insert the new term with the same 

exponent. 

3. Add remaining terms: Once one list is fully traversed, append the remaining terms from the 

other list to the result list. 

4. Return the resulting polynomial. 

// C function of add two polynomials 

struct Node* addPolynomial(struct Node* head1, struct Node* head2)  

{ 

if (head1 == NULL) return head2; 

if (head2 == NULL) return head1; 

         if (head1->pow > head2->pow)  

{ 

          struct Node* nextPtr = addPolynomial(head1->next, head2); 

          head1->next = nextPtr; 

          return head1; 

     } 

    else if (head1->pow < head2->pow)  

{ 

         struct Node* nextPtr = addPolynomial(head1, head2->next); 

          head2->next = nextPtr; 

          return head2; 

     } 

     struct Node* nextPtr = addPolynomial(head1->next, head2->next); 

     head1->coeff += head2->coeff; 

     head1->next = nextPtr; 

     return head1; 

} 

 

 



5a. Summarize Sparse Matrix. For the given sparse matrix, write the diagrammatic linked list 

representation. 

             8  0  0  0 

           5  0  0  3 

           0  0  0  0 

           4  0  0  8 

           0  0  9  1 

To represent the given sparse matrix as a linked list diagrammatically, you need to create a representation 

where each non-zero element is stored along with its row and column indices. Here's how you can summarize 

it: 

Linked List Representation: 

Each node in the linked list contains: 

 Value: The non-zero element. 

 Row index: The row position of the element. 

 Column index: The column position of the element. 

 Pointer: A pointer to the next node. 

For this matrix: 

1. The non-zero elements are: 8, 5, 3, 4, 8, 9, 1. 

2. Their respective positions are:  

 8 at (0, 0) 

 5 at (1, 0) 

 3 at (1, 3) 

 4 at (3, 0) 

 8 at (3, 3) 

 9 at (4, 2) 

 1 at (4, 3) 

Linked List Nodes: 

Each node can be represented as: 

[value, row, column] -> next_node 

Diagram Representation: 

[8, 0, 0] -> [5, 1, 0] -> [3, 1, 3] -> [4, 3, 0] -> [8, 3, 3] -> [9, 4, 2] -> [1, 4, 3] -> NULL 

This linked list representation is sequentially connected, storing only non-zero elements, saving space 

compared to the full matrix. Let me know if you need further elaboration or a drawing for better visualization! 

 

 

          



5b. Define Doubly linked list. Write the functions to perform the following operations on doubly linked 

list. 

Definition: A doubly-linked list is a linear collection of nodes where each node is divided into three parts:  

 info – This is a field where the information has to be stored  

 llink – This is a pointer field which contains address of the left node or previous node in the list  

 rlink – This is a pointer field which contains address of the right node or next node in the list  

The pictorial representation of a doubly linked list is shown in figure below: 

 

(i) Insert a node at rear end of the list 

void insertAtRear(int data)  

{ 

     Node* newNode = (Node*)malloc(sizeof(Node)); 

     newNode->data = data; 

     newNode->next = NULL; 

     newNode->prev = NULL; 

    if (head == NULL)  

{   

          head = newNode; 

          return; 

  } 

    Node* temp = head; 

     while (temp->next != NULL)  

{   

          temp = temp->next; 

     } 

     temp->next = newNode;   

     newNode->prev = temp;   

} 

 

(ii) Delete a node at rear end of the list  

void deleteAtRear()  

{ 

     if (head == NULL)  

{           

printf("List is empty.\n"); 

          return; 

     } 

     Node* temp = head; 

     while (temp->next != NULL)  

{   

          temp = temp->next; 

     } 



     if (temp->prev != NULL)  

{   

          temp->prev->next = NULL; 

     }  

else  

{   

          head = NULL; 

     } 

     free(temp); 

} 

 

(iii) Search a node with a given key value 

int search(int key)  

{ 

     Node* temp = head; 

     int position = 0; 

     while (temp != NULL)  

{ 

          if (temp->data == key)  

{ 

               return position;   

          } 

          temp = temp->next; 

         position++; 

     } 

     return -1;   

} 

6a. Define Tree with any six tree terminology. 

A Tree is a hierarchical data structure consisting of nodes, where each node may have a parent and zero or 

more children. It is defined as a collection of nodes such that: 

1. There is a distinguished node called the root. 

2. Every other node is connected by an edge from exactly one parent node. 

3. The structure has no cycles, making it a connected, acyclic graph. 

 

Six Tree Terminologies 

1. Root: 

o The topmost node of the tree. 

o It has no parent. 

o Example: In a tree representing a family, the root could represent the oldest ancestor. 

2. Parent and Child: 

o A parent is a node with one or more children. 

o A child is a node that descends from a parent node. 

o Example: In a binary tree, a node can have up to two children. 



3. Leaf: 

o A leaf is a node that has no children. 

o It represents the end of a branch in the tree. 

o Example: In a file system tree, files (not folders) are typically leaf nodes. 

4. Height of a Tree: 

o The height of a tree is the length of the longest path from the root to a leaf. 

o Example: If a tree has three levels, its height is 2 (considering 0-based indexing). 

5. Degree of a Node: 

o The degree of a node is the number of children it has. 

o Example: In a binary tree, the maximum degree of a node is 2. 

6. Subtree: 

o A subtree is any node in the tree along with its descendants. 

o Example: If you remove a node and its children from the tree, that part forms a subtree. 

 

Tree Diagram Example 

Consider the following tree structure: 

A 

/   \ 

B     C 

                                                                                   /  \     /  \ 

D   E F   G 

 Root: A 

 Parent: A is the parent of B and C. 

 Children: B and C are children of A. 

 Leaf: D, E, F, G are leaf nodes. 

 Height: The height of this tree is 2 (from A to the deepest leaf D, E, F, or G). 

 Subtree: The tree rooted at B (with children D and E) is a subtree. 

 

 

 

 

 

 

 

 

 



6 b.Write the function for copying and testing of binary tree. 

 Copying a tree – copy one binary tree to other tree  

 Test for equality – check whether two tress are equal or not 

// Function to get the exact copy of a tree  // Function to get the exact copy of a tree 

 

NODE copy(NODE root)  

{  

NODE temp;  

if ( root == NULL ) return NULL;         

temp = getnode();                   

temp->info = root->info;            

temp->lptr = copy(root->lptr);           

temp->rptr = copy(root->rptr);  

return temp;      

} 

 

 

int equal (NODE r1, NODE r2)  

{  

          if (r1 == NULL && r2 == NULL) return 1;  

          if (r1 == NULL && r2 != NULL) return 0;  

          if (r1 != NULL && r2 == NULL) return 0;  

          if (r1->info != r2->info) return 0;    

          if (r1->info == r2->info) return 1;    

          return equal(r1->llink, r2->llink) &&  

equal(r1->rlink, r2->rlink);  

} 

 

 

6 C. Draw a binary tree and find out the binary tree traversals for the following expression  

3+4*(7-6)/4+3. 

In-Order Traversal (Left, Root, Right): 

The in-order traversal produces the original expression.  

 

 

 

 
 

 

 

 

 

 

Let us traverse the tree in preorder and postorder as shown below: 



Preorder traversal                       Postorder traversal  

 

 

 

 

 
 

E        E 

+ D 3        D 3 + 

+ + 3 C 3       3 C + 3 + 

+ + 3 / B 4 3       3 B 4 / + 3 + 

+ + 3 / * 4 A 4 3      3 4 A * 4 / + 3 + 

+ + 3 / * 4 – 7 6 4 3      3 4 7 6 - * 4 / + 3 + 

(Prefix Expression)      (Postfix Expression) 



7 a.. Construct binary search tree for the given set of values 14, 15, 4, 9, 7, 18, 3, 5, 16, 20.  Also perform 

inroder, preorder and post order traversals of the obtained tree. 

Constructing the Binary Search Tree (BST) 

Rules for BST construction: 

 The left subtree of a node contains only nodes with values less than the node's value. 

 The right subtree of a node contains only nodes with values greater than the node's value. 

Steps to Construct the Tree 

1. Start with the first value (14) as the root. 

2. Insert each value one by one, comparing it with the current node and moving left or right accordingly. 

Values to insert: 14, 15, 4, 9, 7, 18, 3, 5, 16, 20 

  14 

            /      \ 

                                                         4         15 

                                                       /    \          \ 

                                                    3      9         18 

                                                           /         /      \ 

                                                        5        16       20 

                                                         \ 

                                                          7 

 

Now, let's perform the traversals: 

Inorder Traversal (Left, Root, Right): 

 Traverse the left subtree. 

 Visit the root node. 

 Traverse the right subtree. 

Inorder Traversal Output: 3, 4, 5, 7, 9, 14, 15, 16, 18, 20 

Preorder Traversal (Root, Left, Right): 

 Visit the root node. 

 Traverse the left subtree. 

 Traverse the right subtree. 

Preorder Traversal Output: 14, 4, 3, 9, 5, 7, 15, 18, 16, 20 

Postorder Traversal (Left, Right, Root): 

 Traverse the left subtree. 

 Traverse the right subtree. 

 Visit the root node. 

Postorder Traversal Output: 3, 7, 5, 9, 4, 16, 20, 18, 15, 14 



7 b. Build a linked list representation of disjoint sets in detail. 

To build a linked list representation of disjoint sets, we use a method called linked list-based disjoint-set 

representation. In this representation, each set is implemented as a linked list, and the head of the list serves as 

the representative of the set. 

Key Concepts in Linked List Representation of Disjoint Sets 

1. Node Structure: 

o Each node stores: 

 The element. 

 A pointer to the next element in the linked list. 

 A pointer to the head of the linked list (for quick access to the set representative). 

2. Set Operations: 

o Make-Set(x): Create a new set with a single element x. 

o Find(x): Find the representative (head) of the set containing x. 

o Union(x, y): Merge two sets containing x and y. 

Implementation Steps 

1. Node Structure 

Each node in the linked list can be represented as: 

1. value: The element's value. 

2. next: A pointer to the next node in the list. 

3. head: A pointer to the head of the list, representing the set's representative. 

2. Disjoint Set Operations 

1. Make-Set(x): 

o Create a new linked list containing a single node. 

o The head pointer of the node points to itself. 

2. Find(x): 

o Return the head pointer of the node. 

3. Union(x, y): 

o Combine the two linked lists of the sets containing x and y. 

o Append the second list to the end of the first list and update the head pointer of all nodes in the 

second list. 

Characteristics and Limitations 

1. Advantages: 

o Simple implementation. 

o Direct representation of disjoint sets. 

2. Disadvantages: 

o Union operation is expensive because updating the head pointer for all nodes in the second list 

takes O(n) time. 

o Does not use the path compression optimization. 



7 c. Simplify recursive search algorithm for a binary search tree. 

A recursive search algorithm for a binary search tree (BST) can be simplified by directly utilizing the 

binary search tree properties: 

 If the value matches the root, return the node. 

 If the value is smaller, recursively search in the left subtree. 

 If the value is larger, recursively search in the right subtree. 

Here’s the simplified recursive search algorithm: 

Implementation in C 

// Recursive function to search in the BST 

Node* searchBST(Node* root, int value)  

{ 

     if (root == NULL || root->value == value)  

{ 

          return root; 

     } 

     if (value < root->value)  

{ 

          return searchBST(root->left, value); 

     } 

     return searchBST(root->right, value); 

} 

Explanation of the Code 

1. Base Case: 

o If the current node (root) is NULL, the value is not found. 

o If the value matches the current node's value, the node is returned. 

2. Recursive Steps: 

o If the value is smaller than the current node's value, the search continues in the left subtree. 

o If the value is larger, the search continues in the right subtree. 

Advantages of This Algorithm 

1. It is simple and concise. 

2. Takes advantage of the BST properties for efficient searching (O(log⁡n)O(\log n)O(logn) for balanced 

trees). 

 



8 a. Compare a graph with tree. For the graph shown in Fig.Q8(a), show the adjacency matrix and 

adjacency list representation. 

 

The given graph represents a directed graph. To solve the problem, let's compute both the adjacency matrix 

and the adjacency list representation for the graph. 

Adjacency Matrix 

The adjacency matrix is a 2D matrix where each entry M[i][j] represents whether there is an edge from 

vertex ii to vertex jj (1 if there is an edge, 0 otherwise). 

Adjacency List 

The adjacency list representation associates each vertex with a list of its direct neighbors (vertices it has 

outgoing edges to). 

Let's first analyze the graph: 

Vertices: A,B,C,D,E 

Edges (from the diagram): 

 A→B, A→C, A→D 

 B→E 

 C→D 

 D→E, D→D(self-loop) 

Now I'll compute the adjacency matrix and adjacency list: 

Adjacency Matrix: 

   A  B  C  D  E 

A [0, 1, 1, 1, 0] 

B [0, 0, 0, 0, 1] 

C [0, 0, 0, 1, 0] 

D [0, 0, 0, 1, 1] 

E [0, 0, 0, 0, 0] 

Adjacency List: 

A: B, C, D 

B: E 

C: D 

D: D, E 

E: (no neighbors) 
 

 

 



8.b. Explain all methods used for traversing a graph with suitable example and write 'C' function for the 

same. 

Graph Traversal Methods 

Graph traversal refers to the process of visiting each vertex and edge in a graph. There are two primary methods 

to traverse a graph: 

1. Depth-First Search (DFS) 

Description: 

 DFS explores as far as possible along each branch before backtracking. It uses a stack (explicitly or via 

recursion) to keep track of the vertices to visit. 

Steps: 

1. Start at a source vertex. 

2. Mark it as visited. 

3. Recursively visit all unvisited neighbors. 

4. Backtrack when there are no more unvisited neighbors. 

Example: 

                  Graph: 

      A 

   /     \ 

  B     C 

/   \ 

                                            D   E 

Traversal (starting from A): 

A -> B -> D -> E -> C 

2. Breadth-First Search (BFS) 

Description: 

 BFS explores all the neighbors of a vertex before moving to the next level of vertices. It uses a queue to 

keep track of the vertices to visit. 

 

 



Steps: 

1. Start at a source vertex. 

2. Mark it as visited and enqueue it. 

3. Dequeue a vertex, process it, and enqueue all its unvisited neighbors. 

4. Repeat until the queue is empty. 

Example: 

                     Graph: 

    A 

   /   \ 

                                              B    C 

                                            /   \ 

                                         D     E 

Traversal (starting from A): 

A -> B -> C -> D -> E 

C Functions for DFS and BFS 

Here's the code implementation in C: 

1. Depth-First Search (DFS) 

void DFS(int graph[MAX][MAX], int visited[], int vertex, int n)  

{ 

    printf("%c ", vertex + 'A');  

    visited[vertex] = 1;          

 

    for (int i = 0; i < n; i++)  

    { 

        if (graph[vertex][i] == 1 && !visited[i])  

        {  

            DFS(graph, visited, i, n); 

        } 

    } 

} 

 

 



2. Breadth-First Search (BFS) 

void BFS(int graph[MAX][MAX], int n, int startVertex)  

{ 

    int queue[MAX], front = 0, rear = 0; 

    int visited[MAX] = {0}; 

 

    queue[rear++] = startVertex; 

    visited[startVertex] = 1; 

 

    while (front < rear)  

    { 

        int vertex = queue[front++];  

        printf("%c ", vertex + 'A');  

 

        for (int i = 0; i < n; i++)  

        { 

            if (graph[vertex][i] == 1 && !visited[i])  

            {                  

                  queue[rear++] = i;   

                  visited[i] = 1;      

            } 

        } 

    } 

} 

 

9. a. Differentiate between static hashing and dynamic hashing in detail with operations. 

1. Static Hashing 

Definition: 

In static hashing, the hash table has a fixed size. Once the table is created, the number of buckets remains 

constant throughout its usage. 

Characteristics: 

1. Fixed Table Size: The number of buckets is predefined and does not change even if data grows beyond 

capacity. 

2. Overflow Handling: Collisions and overflow are managed using techniques like chaining (linked lists) 

or overflow buckets. 

3. Efficiency: Works well when the size of the data is known and does not change significantly. 

4. Memory Usage: Can waste memory if the hash table is underutilized or cause performance degradation 

if it's overfull. 



5. Collisions: More frequent in static hashing as data grows. 

Operations: 

1. Insertion: 

o Compute the hash value of the key using a hash function. 

o Place the key-value pair in the corresponding bucket. 

o If the bucket is full, manage overflow using chaining or other methods. 

2. Search: 

o Compute the hash value of the key. 

o Search within the bucket to find the value. 

3. Deletion: 

o Compute the hash value of the key. 

o Remove the key-value pair from the bucket. 

Example: 

 Hash Table with 5 buckets (bucket[0] to bucket[4]). 

 Hash function: h(key)=key mod  5. 

For keys 12, 22, 32: 

 Insertion: All map to bucket[2] causing overflow, managed via chaining. 

 

2. Dynamic Hashing 

Definition: 

In dynamic hashing, the size of the hash table grows or shrinks dynamically based on the data. It uses a 

directory structure to map keys to buckets. 

Characteristics: 

1. Variable Table Size: Buckets are split or merged dynamically as data increases or decreases. 

2. Collision Reduction: Reduces collisions as new buckets are created when required. 

3. Scalable: Ideal for applications where data size is unpredictable. 

4. Memory Usage: Optimized as the structure adapts to data requirements. 

5. Uses Directory: A directory level manages the mapping of keys to buckets, and it grows as buckets are 

split. 

Operations: 

1. Insertion: 

o Compute the hash value of the key using the hash function. 

o Place the key-value pair in the corresponding bucket. 

o If the bucket overflows, split the bucket and update the directory. 

2. Search: 

o Compute the hash value of the key. 

o Use the directory to find the corresponding bucket and retrieve the value. 

 



3. Deletion: 

o Compute the hash value of the key. 

o Remove the key-value pair from the bucket. 

o Optionally merge buckets if utilization falls below a threshold. 

Example: 

 Initial directory has 2 buckets (size doubles dynamically). 

 Insert keys: 5, 15, 25 (hash function h(key)=key mod 4). 

 After splitting due to overflow:  

o Directory grows to accommodate more buckets. 

o Keys are redistributed based on new hash values. 

 

Comparison Table 

Aspect Static Hashing Dynamic Hashing 

Table Size Fixed. Defined during initialization. 
Dynamic. Adjusts as data grows or 

shrinks. 

Overflow Handling Managed via chaining or overflow buckets. 
Handled by splitting buckets 

dynamically. 

Memory Usage 
Can waste memory if underutilized or 

degrade performance when overfilled. 
Efficient as it adjusts to the data. 

Scalability 
Limited. Not suitable for unpredictable or 

growing datasets. 

Highly scalable for dynamic or 

unpredictable datasets. 

Collision 

Frequency 
Higher, especially as data grows. Lower, as buckets split dynamically. 

Ease of 

Implementation 
Simpler to implement and understand. 

Complex due to directory management 

and bucket splitting logic. 

Use Case 
Suitable for static or small datasets where 

size is predictable. 

Suitable for dynamic or large datasets 

with unpredictable size. 

 

9 b. Describe double ended priority queue. 

A Double-Ended Priority Queue (DEPQ), also known as a Two-ended Priority Queue, is a specialized data 

structure that supports the following operations: 

1. Insert: Insert an element into the queue. 

2. Delete-Min: Remove and return the smallest element in the queue. 

3. Delete-Max: Remove and return the largest element in the queue. 

4. Peek-Min: Return the smallest element without removing it. 

5. Peek-Max: Return the largest element without removing it. 

 

 



Key Characteristics: 

 Two Ends 

 Efficient Operations 

Operations in a Double-Ended Priority Queue (DEPQ) 

1. Insert  

2. Delete-Min  

3. Delete-Max  

4. Peek-Min  

5. Peek-Max 

Implementation Details 

A typical implementation of a Double-Ended Priority Queue can use two heaps (min-heap and max-heap). 

This structure allows both ends to be efficiently accessed: 

1. Min-Heap 

2. Max-Heap 

Advantages of Double-Ended Priority Queue (DEPQ): 

 Efficient 

 Versatile 

Applications: 

 Scheduling Systems 

 Data Streams 

 Game Engines 

 

9 c. Explain Hashing with any three Hash functions. 

Hashing is a technique used to map data (keys) to fixed-size values, typically integers, called hash values or 

hash codes. This mapping is performed by a hash function.  

Different Hashing Functions 

A hash function takes an input (key) and produces a fixed-size output (hash value). There are different types of 

hash functions depending on the requirements, such as: 

1. Division Method: 

o The simplest and most commonly used method. 

o The hash value is computed by taking the modulus of the key with a prime number mm (size of 

the table). 

Hash function: 

h(k)=k mod  m 

where k is the key, and mm is the size of the table (preferably a prime number). 

Example: 

o Given a table size of 10, hash function h(k)=k mod  10 

o For key 15, the hash value is h(15)=15 mod  10=5 



2. Folding Method: 

o In this method, the key is divided into several parts, which are then added together to produce 

the hash value. 

Hash function: 

o Split the key into equal-sized parts, then sum the parts and take modulo mm. 

Example: 

o Given key 123456, split it into parts: 12, 34, 56. 

o Sum the parts: 12+34+56=102. 

o Take 102 mod  10=2. 

o The hash value is 2. 

3. Mid Square Method: 

o In this method, the key is squared, and the middle digits of the result are extracted as the hash 

value. 

Hash function: 

h(k)=middle digits of k2  

Example: 

o For key 23, square it: 232=529. 

o Extract the middle digit(s): 5. 

o The hash value is 5. 

 

10 a. What is collision? Explain the method to resolve collision with suitable algorithm of linear probing. 

Insert keys 72, 27, 36, 24, 63, 81, 92, 101 into % [size 10]. 

A collision in hashing occurs when two or more keys map to the same index in a hash table. Since each index 

in a hash table can only store one element, when two keys hash to the same index, a collision happens. This can 

occur when the hash function produces the same hash value for different keys. 

Collision Resolution Methods 

There are several methods to resolve collisions in hash tables, including: 

1. Chaining: Store multiple elements at the same hash index using a linked list or another dynamic data 

structure. 

2. Open Addressing: All elements are stored within the hash table itself. When a collision occurs, the 

algorithm searches for the next available slot based on a specific probing technique. Some common 

open addressing methods include: 

o Linear Probing 

o Quadratic Probing 

o Double Hashing 



Linear Probing for Collision Resolution 

In Linear Probing, when a collision occurs at a given index, the algorithm checks the next index (i.e., index + 

1) in the hash table. If that index is occupied, it checks the next one (index + 2), and so on, until an empty slot is 

found. This technique is simple but suffers from primary clustering, where groups of consecutive occupied 

slots form, leading to performance degradation. 

Linear Probing Algorithm 

1. Compute the hash index for the key. 

2. If the slot at the computed index is empty, insert the key there. 

3. If the slot is occupied, move to the next slot (index + 1). 

4. Repeat the process until an empty slot is found. 

Example: Insert keys into a hash table using Linear Probing 

Let’s create a hash table of size 10 and insert the following keys: 

72, 27, 36, 24, 63, 81, 92, 101 

Hash Function 

h(key)=key%10 

This will produce a hash value between 0 and 9 (since the table size is 10). 

Step-by-Step Insertion with Linear Probing 

1. Insert key 72: 

h(72)=72%10=2  

Slot 2 is empty, so insert 72 at index 2. 

2. Insert key 27: 

h(27)=27%10=7  

Slot 7 is empty, so insert 27 at index 7. 

3. Insert key 36: 

h(36)=36%10=6  

Slot 6 is empty, so insert 36 at index 6. 

4. Insert key 24: 

h(24)=24%10=4  

Slot 4 is empty, so insert 24 at index 4. 

 



5. Insert key 63: 

h(63)=63%10=3  

Slot 3 is empty, so insert 63 at index 3. 

6. Insert key 81: 

h(81)=81%10=1  

Slot 1 is empty, so insert 81 at index 1. 

7. Insert key 92: 

h(92)=92%10=2  

Slot 2 is occupied (by 72), so use linear probing. Check the next index (index 3): 

o Slot 3 is occupied (by 63), so move to index 4. 

o Slot 4 is occupied (by 24), so move to index 5. 

o Slot 5 is empty, so insert 92 at index 5. 

 

8. Insert key 101: 

h(101)=101%10=1  

Slot 1 is occupied (by 81), so use linear probing. Check the next index (index 2): 

Final Hash Table 

After inserting all the keys using linear probing, the hash table looks like this: 

Index Value 

0 Empty 

1 81 

2 72 

3 63 

4 24 

5 92 

6 36 

7 27 

8 101 

9 Empty 

 

 

 

 

 

 



10 b. Construct an optimal binary search tree for the following keys with the probabilities as 

Keys A B C D E 

Probability 0.25 0.2 0.05 0.2 0.3 

 

To construct an Optimal Binary Search Tree (OBST) for the given keys and probabilities, we will use the 

dynamic programming approach. 

Given: 

 Keys: A, B, C, D, E 

 Probabilities:  

o P(A) = 0.25 

o P(B) = 0.20 

o P(C) = 0.05 

o P(D) = 0.20 

o P(E) = 0.30 

Objective: 

We want to find an optimal binary search tree such that the expected search cost is minimized. 

Steps: 

1. Define Variables: 

o C[i][j]: Minimum cost of constructing a binary search tree from keys i to j. 

o W[i][j]: Sum of probabilities from keys ii to j, including the probabilities of the keys themselves. 

o Key Indexes: A = 1, B = 2, C = 3, D = 4, E = 5. 

2. Initialize the Probability Table: For each pair of keys i and j, calculate W[i][j], the sum of 

probabilities for keys i to j: 

W[i][j]=P[i]+P[i+1]+⋯+P[j]]  

 

The table of probabilities looks like this: 

i/j 1 (A) 2 (B) 3 (C) 4 (D) 5 (E) 

1 (A) 0.25 0.45 0.50 0.70 1.00 

2 (B)  0.20 0.25 0.45 0.75 

3 (C)   0.05 0.25 0.55 

4 (D)    0.20 0.50 

5 (E)     0.30 

3. Initialize the Cost Table: For a single key (when i=j), the cost is simply the probability of the key: 

 

C[i][i]=P[i] 

 



The table of costs for individual keys: 

i/j 1 (A) 2 (B) 3 (C) 4 (D) 5 (E) 

1 (A) 0.25     

2 (B)  0.20    

3 (C)   0.05   

4 (D)    0.20  

5 (E)     0.30 

4. Fill the Table Using Dynamic Programming: We now fill the table for C[i][j], the minimum cost for 

constructing a binary search tree from keys i to j, using the recurrence relation: 

 

 

where r is the root of the tree for the subarray from i to j. 

For example, for C[1][2], we compute the cost for both possible roots (A or B), and similarly for all 

other ranges of keys. 

Calculation: 

Now let's go step-by-step to calculate the values of C[i][j] for increasing subarray sizes. 

Cost Table Calculations: 

 

Now we continue this for larger ranges (for example, C[1][3],C[2][4], etc.), and continue applying the 

recurrence relation. 

Finally, the optimal binary search tree will be built by choosing the root that minimizes the cost at each stage. 

 


