Chapter 11: Graphs

What are we studying in this chapter?

Definitions

Terminologies

Matrix and Adjacency List Representation of Graphs
Elementary Graph operations

Traversal methods:

= Breadth First Search

= Depth First Search

* & & o o

11.1 Introduction

In this chapter, let us concentrate another important and non-linear data structure called
graph. In this chapter, we discuss basic terminologies and definitions, how to represent
graphs and how graphs can be traversed.

11.2 Graph Theory terminology
First, let us see “What is a vertex?”

Definition: A vertex is a synonym for a node. A vertex is normally represented by a
circle. For example, consider the following figure:

@
©) @®

Fig Vertices

In the above figure, there are four nodes identified by 1, 2, 3, 4. They are also called
vertices and normally denoted by aset V = {1, 2, 3, 4}.

Now, let us see “What is an edge?”

Definition: If u and v are vertices, then an arc or a line joining two vertices u and v is
called an edge.

Example 1: Consider the figure: . .

11.2 B Graphs

Observe the following points from above figure:

¢

There is no direction for the edge between vertex 1 and vertex 6 and hence it is
undirected edge.

The undirected edge is denoted by an ordered pair (1, 6) where 1 and 6 are called end
points of the edge (1, 6). In general, if e = (u, v), then the nodes u and v are called end
points of directed edge.

In this graph, edge (1, 6) is same as edge (6, 1) since there is no direction associated
with that edge. So, (u, v) and (v, u) represent same edge.

Example 2: consider the figure:

Observe the following points from above figure:

¢

There is a direction for the edge originating at vertex 1 (called tail of the edge) and
heading towards vertex 6 (called head of the edge) and hence it is called directed
edge.

The directed edge is denoted by the directed pair <1, 6> where 1 is called tail of the
edge and 6 is the head of the edge. So, the directed pair <1, 6> is not same as directed
pair <6, 1>.

In general, if a directed edge is represented by directed pair <u, v>, u is called the tail
of the edge and v is the head of the edge. So, the directed pair <u, v> is different from
the directed pair <v, u>. So, <u, v> and <v, u> represent two different edges.

Now, let us see “What is a graph?”

Definition: Formally, a graph G is defined as a pair of two sets V and E denoted by

G=(V, E)
where V is set of vertices and E is set of edges. For example, consider the graph shown
below:
o @ Here, graph G = (V, E) where
¢ V={1,2 34,5 6} issetof vertices
e 6 ¢ E={<1,6> <1, 2> <2, 3> <4, 3>, <5, 3> <5, 6>,
e <6, 4> } is set of directed edges

9 Note:
¢ |V|=H1, 2, 3, 4,5, 6} = 6 represent the number of
vertices in the graph.

Data Structures using C - 11.3

¢ |El = {<1, 6>, <1, 2>, <2, 3>, <4, 3>, <5, 3>, <5, 6>, <6, 4> }| = 7 represent the
number of edges in the graph.

Now, let us see “What is a directed graph? What is an undirected graph?”

Definition: A graph G = (V, E) in which every edge is directed is called a directed graph.
The directed graph is also called digraph. A graph G = (V, E) in which every edge is
undirected is called an undirected graph. Consider the following graphs:

Here, graph G = (V, E) where

' ¢ V={0,1,2} issetof vertices

0 ¢ E={<0,1> <1,0>, <1, 2>}is set of edges

Note: Since all edges are directed it is a directed graph.
In directed graph we use angular brackets < and > to

@ represent an edge

Here, graph G = (V, E) where

¢ V={1,234,56,7, 8} issetof vertices

¢ E={(1,5),(1,6),(57),(6,8),(6,4),(8,3),(8,2)}is
set of edges

Note: Since all edges are undirected, it is an undirected
graph. In undirected graph we use parentheses (and) to
represent an edge (u, v).

Now let us see “What is a self-loop (or self-edge)? self-loop self-loop

Definition: A loop is an edge which starts and ends on the

same vertex. A loop is represented by an ordered pair (i, 1). o e
This indicates that the edge originates and ends in the same

vertex. A loop is also called self-edge or self-loop. In the

given graph shown below, there are two self-loops

namely, <1, 1> and <4, 4>. 9

Now, let us see “What is a multigraph?”

11.4 B Graphs

Definition: A graph with multiple occurrence of the
same edge between any two vertices is called multigraph.
Here, there are two edges between the nodes 1 and 4 and
there are three edges between the nodes 4 and 3.

Now, let us see “What is a complete graph?”

multiple edges

Definition: A graph G = (V, E) is said to be a complete graph, if there exists an edge
between every pair of vertices. The graph (a) below is complete. Observe that in a
complete graph of n vertices, there will be n(n-1)/2 edges. Substituting n = 4, we get 6
edges. Even if one edge is removed as shown in graph (b) below, it is not complete graph.

Complete graph

Now, let us see “What is a path?”

Definition: Let G = (V, E) be a graph. A
path from vertex u to vertex v in an
undirected graph is a sequence of adjacent
vertices (u, Vo, V1, Vz,....vk, V) such that:

(u, Vo), (Vo, V1),....(Vk, V) are the edges in
G. Consider the following graph:

In the graph, the path from vertex 1 to 4
is denoted by: 1, 2, 3, 4 which can also be
written as (1, 2), (2, 3), (3, 4).

Not a complete graph

Definition: Let G = (V, E) be a graph. A
path from vertex u to vertex v in a directed
graph is a sequence of adjacent vertices <u,
Vo, V1, V2,....vk, V> such that <u, vo>, <vy,
vi>,....<vk, V> are the edges in G. Consider
the following graph:

Gvﬁ
@—0

In the graph, the path from vertex 1 to 3 is
denoted by 1, 4, 2, 3 which can also be
written as <1, 4>, <4, 2>, <2, 3>

Data Structures using C - 11.5

Now, let us see “What is simple path?”

Definition: A simple path is a path in which all vertices except possibly the first and last
are distinct. Consider the undirected and directed graph shown below:

Ex 1. In the graph, the path 1, 2, 3, 4is Ex 1: In the graph, the path 1, 4, 2, 3 is
simple path since each node in the simple path since each node in the
sequence is distinct. sequence is distinct.

Ex2: In the graph, the path 1, 2, 3, 2 is not Ex 2: The sequence 1, 4, 3 is not a path

a simple path since the nodes in sequence since there is no edge <4, 3> in the graph.
are not distinct. The node 2 appears twice

in the path

Now, let us see “What is length of the path?”

Definition: The length of the path is the number of edges in the path.

Ex 1: In the above undirected graph, the path (1, 2, 3, 4) has length 3 since there are three
edges (1, 2), (2, 3), (3, 4). The path 1, 2, 3 has length 2 since there are two edges (1, 2),
2, 3).

Ex 2: In the above directed graph, the path <1, 2, 3, 4> has length 3 since there are three
edges <1, 2>, <2, 3>, <3, 4>, The path <1, 4, 2> has length 2 since there are two edges
<1, 4>, <4, 2>.

Now, let us “Define the terms cycle (circuit)?”

Definition: A cycle is a path in which the first and last vertices are same.

For example, the path <4, 2, 3, 4> shown in above directed graph is a cycle, since the first
node and last node are same. It can also be represented as <4, 2>, <2, 3>, <3, 4> <4, 2>,

Note: A graph with at least one cycle is called a cyclic graph and a graph with no cycles
is called acyclic graph. A tree is an acyclic graph and hence it has no cycle.

Now, let us see “What is a connected graph?”

11.6 B Graphs

Definition: In an undirected graph G, two vertices u and v are said to be connected if
there exists a path from u to v. Since G is undirected, there exists a path from v to u also.
A graph G (directed or undirected) is said to be connected if and only if there exists a
path between every pair of vertices.

For example, the graphs shown in figure below are connected graphs.

Figure Connected graphs

Now, let us see “What is a disconnected graph?”

Definition: Let G = (V, E) be a graph. If there exists at least one vertex in a graph that
cannot be reached from other vertices in the graph, then such a graph is called
disconnected graph. For example, the graph shown below is a disconnected graph.

Since vertex 1 is
not reachable
from 3, the graph
is not connected

Not connected

11.3 Representation of graph

Now, let us see “What are the different methods of representing a graph?” The graphs can
be represented in two different methods:

—» Adjacency matrix

Representation of graph — i))
—» Adjacency linked list

Let us see “What is an adjacency matrix? explain with example”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges. Let
N be the number of vertices in graph G. The adjacency matrix A of a graph G is formally
defined as shown below:

Data Structures using C - 11.7

. 1 if there is an edge from vertex i to vertex j.
it = {

0 if there is no edge from vertex i to vertex j.

¢ It is clear from the definition that an adjacency matrix of a graph with n vertices is a
Boolean square matrix with n rows and n columns with entries 1’s and 0’s (bit-
matrix)

¢ In an undirected graph, if there exists an edge (i, j) then a[i][j] and a[j][i] is made 1
since (i, j) is same as (j, i)

¢ In adirected graph, if there exists an edge <i, j> then a[i][j] is made 1 and a[j][i] will
be 0.

¢ If there is no edge from vertex i to vertex j, then a[i][j] will be 0.

Note: The above definition is true both for directed and undirected graph. For example,
following figures shows the directed and undirected graphs along with equivalent
adjacency matrices:

0 1 2 3
ojof1]1]1
110]0]1{0
210J0]0]1
3{0]11]0]0

(a) Directed graph Adjacency matrix
0 1 2 3
0{0]1]1]0
111]0]1f1
21111101
3(0]1]1]0
(b) Undirected graph Adjacency matrix
Fig. Graphs and equivalent adjacency matrices

Now, let us see “What is an adjacency list? explain with example”

11.8 B Graphs

Definition: Let G = (V, E) be a graph. An adjacency linked list is an array of n linked
lists where n is the number of vertices in graph G. Each location of the array represents a
vertex of the graph. For each vertex u € V, a linked list consisting of all the vertices
adjacent to u is created and stored in A[u]. The resulting array A is an adjacency list.

Note: It is clear from the above definition that if i, j and k are the vertices adjacent to the
vertex u, then i, j and k are stored in a linked list and starting address of linked list is
stored in A[u] as shown below:

A

o = I B o VI B e 34

For example, figures below shows the directed and undirected graphs along with
equivalent adjacency linked list:

A
ol T2l 321l T8 14 nodes adjacent to 0
1| 112 |/ nodes adjacent to 1
2 __> nodes adjacent to 2
3 __> nodes adjacent to 3

(a) Directed graph Adjacency linked list

A
O (Y ol 1] {2 /] nodes adjacent to 0
1 _%m—ﬂ 2| =3 /] nodesadjacent to 1
© B 2| T[0T F={1 T 3]/ nodesadjacent to 2

3|11] {2 |/] nodes adjacent to 3

(b) Undirected graph Adjacency linked list

Fig.: Graphs and equivalent adjacency linked lists

Data Structures using C - 11.9

Now, let us see “Which graph representation is best?” The graph representation to be

used depends on the following factors:

Nature of the problem

Algorithm used for solving

Type of the input.

Number of vertices and edges:

= If a graph is sparse, less number of edges are present. In such case, the
adjacency list has to be used because this representation uses lesser space
when compared to adjacency matrix representation, even though extra
memory is consumed by the pointers of the linked list.

= If a graph is dense, the adjacency matrix has to be used when compared with
adjacency list since the linked list representation takes more memory.

* & o o

Note: So, based on the nature of the problem and based on whether the graph is sparse or
dense, one of the two representations can be used.

Now, let us see “What is a weighted graph?”
Definition: A graph in which a number is assigned to each

edge in a graph is called weighted graph. These numbers 9 10 9
are called costs or weights. The weights may represent the

cost involved or length or capacity depending on the 20 30
problem. 9
For example, in the following graph shown in figure 9 70

the values 10, 20, 30 and 40 are the weights associated with
four edges <1,3>, <1,2>, <3,4> and <2,4>

Let us see “How the weighted graph can be represented?” The weighted graph can be
represented using adjacency matrix as well as adjacency linked list. The adjacency matrix
consisting of costs (weights) is called cost adjacency matrix. The adjacency linked list
consisting of costs (weights) is called cost adjacency linked list. Now, let us see “What is
cost adjacency matrix?”’

Definition: Let G = (V, E) be the graph where V is set of vertices and E is set of edges
with n number of vertices. The cost adjacency matrix A of a graph G is formally defined
as shown below:

o { w if there is a weight associated with edge from vertex i to vertex j.
Alillj] =
o0

if there is no edge from vertex i to vertex j.

11.10 B Graphs

It is clear from the above definition that

¢ The element in i row and j" column is weight w provided there exist an edge
from i vertex to j vertex with cost w

¢ oo if there is no edge from vertex i to vertex j.
¢ The cost from vertex i to vertex i is o (assuming there is no loop).

For example, the weighted graph and its cost adjacency matrix is shown below:

10 01 2 3
0 LlO 20 | oo
20 25 1] \nlS o0
2|0 30
20 @ 3|o]|25]| \r _
Note: Diagonal values
. i : b laced by 0’
(a) Weighted graph (b) Adjacency matrix can beeplacea by
Figure A weighted digraph and the cost adjacency matrix

For the undirected graph, the elements of the cost adjacency matrix are obtained using the
following definition:

. w if there is a weight associated with edge (i, j) or (j, 1)
auli :{w

if there is no edge from vertex i to vertex j.

The undirected graph and its equivalent adjacency matrix is shown below:

0 1 2 3
0 Lzs 10 | oo
10 20 1125 \&15 20
211015 30
30 8|]20 3OT Diagonal values can
@) (b) be replaced by 0’s

Figure: Weighted undirected graph and the adjacency matrix

Note: The cost adjacency matrix for the undirected graph is symmetric (i.e., a[i, j] is
same as a[j, i]) whereas the cost adjacency matrix for a directed graph may not be
symmetric.

Note: For some of the problems, it is more convenient to store 0’s in the main diagonal of
cost adjacency matrix instead of oo.

Data Structures using C - 11.11

Now, let us see “What is cost adjacency linked list?”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges
with n number of vertices. A cost adjacency linked list is an array of n linked lists. For
each vertex u € V, A[u] contains the address of a linked list. All the vertices which are
adjacent from vertex u are stored in the form of a linked list (in an arbitrary manner) and
the starting address of first node is stored in A[u]. If i, j and k are the vertices adjacent to
the vertex u, then i, j and k are stored in a linked list along with the weights in A[u] as
shown below:

O liw [Fliw [k wel/]

For example, the figure below shows the weighted diagraph and undirected graph along
with equivalent adjacency list.

0] 4=[110TF—[220]]
1{ 1215 }|/]
2| 13,30 |/]
3| T7LL2s]

(b) adjacency list

10 O 4={110TF[220]]
1l 101041215 1[3.25 /]

2 | 71020 [4—{ 115 [T>{330 /]
—{ 1,25 [12,30 [/]

30

(c) weighted undirected graph (d) adjacency list

Figure weighted graph and equivalent adjacency list

11.12 B Graphs

Now, the function to read an adjacency matrix can be written as shown below:

Example 11.1: Function to read adjacency matrix

void read_adjacency matrix(int a[10][10], int n)

{ _ .
int i j;
for (i=0; i <n;i++)
{
for (j =0; j <n; j++)
{
scanf(“%d”, &a[i][j]);
}
}
}

The function to read adjacency list can be written as shown below:

Example 11.2: Function to read adjacency list

void read_adjacency_list (NODE a[], int n)

t
int i, j, m, item;
for (i=0;i<n;i++)
{
printf("Enter the number of nodes adjacent to %d:", i);
scanf("%d", &m);
if (m ==0) continue;
printf("Enter nodes adjacent to %d : "', i);
for j=0;j<m; j++)
{
scanf("%d", &item);
a[i] = insert_rear(item, a[i]);
}
}

Data Structures using C - 11.13

11.4 Graph traversals

Now, we concentrate on a very important topic namely graph traversal techniques and
see “What is graph traversal? Explain different graph traversal techniques”

Definition: The process of visiting each node of a graph systematically in some order
is called graph traversal. The two important graph traversal techniques are:

— Breadth Eirst Search (BFS)
— Depth Eirst Search (DFS)

11.4.1 Breadth First Search (BFS)
Now, let us see “What is breadth first search (BFS)?”

Definition: The breadth first search is a method of traversing the graph from an
arbitrary vertex say u. First, visit the node u. Then we visit all neighbors of u. Then
we visit the neighbors of neighbors of u and so on. That is, we visit all the
neighboring nodes first before moving to next level neighbors. The search will
terminate when all the vertices have been visited.

BFS traversal can be implemented using a queue. As we visit a node, it is inserted
into queue. Now, delete a node from a queue and see the adjacent nodes which have
not been visited. The unvisited nodes are inserted into queue and marked as visited.
Deleting and inserting operations as discussed are continued until queue is empty.

Now, let us take an example and see how BFS traversal can be used to see what are
all the nodes which are reachable from a given source vertex.

Example 11.3: Traverse the following graph by breadth-first search and print all the
vertices reachable from start vertex a. Resolve ties by the vertex alphabetical order.

Solution: It is given that source vertex is a. Perform the following activities:

11.14 B Graphs

Initialization: Insert source vertex a into queue and add a to S as shown below:

Initialization

Step 1:i): Delete an element a from queue

(i)

(ii) «

(i) >

v =adj.tou

Nodes visited S

gueue

u = del(Q)

a

ii): Find the nodes adjacent to a but not in S: i.e.,, b, c,dand e
iii): Add b, ¢, dand e to S, insert into queue as shown in the table:

Step 1

Step 2: i): Delete b from queue

Step 1
Step 2

Stage 3: 1) : Delete ¢ from queue

Step 1
Step 2

(i) (i) < (iii) >
u=del(Q) |v=adj.tou | Nodes visited S queue
- - a a
a b,c,de a,b,cde b,c,d, e
ii): Find nodes adjacentto b but notin S: i.e., f
iii): Add f to Sand insert f into queue as shown in table:
(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S gqueue
- - a a
a b,c,d, e a,bcd, b,c,d e
b f .b,c,def c,de,f
ii): Find nodes adjacent to c but notin S: i.e., g
iii): Add g to S, insert g into queue as shown in table
(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S gqueue
- - a a
a b,c,d,e a,b,cde b, c,d,
b f a,b,cde,f c,de,f
C g a,bcdefqg d,ef

Step 3

The remaining steps are shown in the following table:

Data Structures using C - 11.15

(i) (i) < (iii) >
u=del(Q) | v=adj.tou | Nodes visited S queue

Initialization - - a a

Step 1 a b,c,de a,b,cde b,c,d,e

Step 2 b a, df a,b,cdef c,def

Step 3 c a,0 a,b,cdefg |defqg

Step 4 d a,b,f a,bcdefg |efqg

Step 5 e a,9 a,bcdefg |fg

Step 6 f b, d a,b,cdefg |g

Step 7 g c.e a,b,cde fg |empty

ﬁ_/

Thus, the nodes that are reachable from source a: a, b, c, d, e, f, ¢

11.4.1.1 Breadth First Search (BFS) using adjacency matrix

The above activities are shown below in the form of an algorithm along with
pseudocode in C when graph is represented as an adjacency matrix.

no node is visited to start with /l'int s [10] = {0},
insert source u to q [f=0,r=-1,qg[++r] =u
print u /[printu
mark u as visited i.e.,add uto S /Is[ul=1
while queue is not empty I while f<=r
Delete a vertex u from q Il u = q[f++]
For every v adjacent to u Il for each v, if a[u][v] ==1
If v is not visited Il if s[v] ==
print v Il print v
mark v as visited Il sfvl]=1
Insert v to queue Il g[++r]=v
end if 1 endif
1 endif
end while /[end while

The above algorithm can be written using C function as shown below:

11.16 B Graphs

Example 11.4: C function to show the nodes visited using BFS traversal

void bfs(int a[10][10], int n, int u)

{

}

int f, r, q[10], v;
int s[10] = {0}; /* initialize all elements in sto O i.e, no node is visited */

printf("The nodes visited from %d : ", u);

f=0,r=-1, I/ queue is empty
g[++r] = u; /' Insert u into queue
s[u] = 1; I/l insertutos
printf(“%d “,u); // print the node visited
while (f<=r)
{
u = q[f++]; I/ delete an element from g

for (v=0; v<n;v++)

if (a[u][v] ==1) /I '1f v is adjacent to u
if (s[v] ==0) //Ifvisnotin Si.e., v has not been visited
{
printf(“%d “, v); // print the node visited
s[v]=1; // add v to s, mark it as visited
g[++r] =v; I Insert v into queue
}
}
}
}
printf(‘“\n”);

Now, the C program that prints all the nodes that are reachable from a given source
vertex is shown below:

Example 11.5: Algorithm to traverse the graph using BFS

#include <stdio.h>
/* Insert: Example 11.1: Function to read an adjacency matrix*/
/* Insert: Example 11.4: Function to traverse the graph in BFS */

Data Structures using C - 11.17

void main()

{
int n,a[10][10], source, i, j;

printf(“Enter the number of nodes : *);
scanf(“%d”, &n);

printf(“Enter the adjacency matrix:\n”);
for (i=0;i<n;i++)

{
}

for (source = 0; source < n; source++)
bfs(a, n, source);

for (j = 0; j <n; j++) scanf(“%d”, &a[i][j]);

}

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

0O 1 2 3

@ o 0Ojoj11]1]0

110101 |1

2100]0]1

9 9 31010]J0]O
Given graph Adjacency matrix

Output
Enter the number of nodes: 4
Enter the adjacency matrix:
0110
0011
0001
0000
The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
2 3
3

11.18 E Graphs

11.4.1.2 Breadth First Search (BFS) using adjacency list

We know that BFS traversal uses queue data structure which require insert rear
function and delete front function. We can use insert rear function given in example
8.6. But, the delete front function shown in example 8.5 is modified after deleting the
printf() function.

Example 11.6: C function to delete an item from the front end of singly linked list

NODE delete_front(NODE first)

{
NODE temp;
if (first==NULL) return NULL;
temp = first; /* Retain address of the node to be deleted */
temp = temp->link; /* Obtain address of the second node */
free(first); /* delete the front node */
return temp; /* return address of the first node */

}

The algorithm for BFS along with pseudocode when a graph is represented as an
adjacency list can be written as shown below:

no node is visited to start with /l'ints [10] = {0}

insert source u to q /l'qg=NULL, g = insert_rear(u, q);
mark u as visited i.e.,addutoS //s[u] = 1, printf(“%d “, u);
while queue is not empty /' while g '= NULL
u = g->info;
Delete a vertex u fromq // g = delete_front(q),

list = a[u]; // list of vertices adj. to U
Find vertices v adjacent to u // while (list I= NULL)

v = list->info;
If v is not visited Il if (s[v] ==0)
print v Il print v
mark v as visited Il slvl]=1
Insert v to queue Il q = insert_rear(v, q);
end if Il endif
list = list->link
Il end while

end while /I end while

Data Structures using C - 11.19

Now, the complete C function to traverse the graph using BFS when a graph is
represented as adjacency list can be written as shown below:

Example 11.7: C function to show the nodes visited using BFS traversal

void bfs(NODE a[], int n, int u)
{
NODE q, list;
int V;
int s[10] ={0}; /*initialize all elements in s to O i.e, no node is visited */

printf("The nodes visited from %d : ", u);

g = NULL; Il queue is empty
q = insert_rear(u, q); /I Insert u into queue
s[u] = 1; I/l insertutos
printf("%d ", u); // print the node visited
while (q!'=NULL) // as long as queue is not empty
{
u = g->info; // delete a node from queue

g = delete_front(q);

list = a[u]; // obtain nodes adjacent to u
while (list = NULL) /I as long as adjacent nodes exist
{
v = list->info; // v is the node adjacent to u
if (s[v] ==0) //IfvisnotinSi.e., v has not been visited
{
printf("%d ", v); // print the node visited
s[v] = 1; // add v to s, mark it as visited
g = insert_rear(v, q); // Insert v into queue
}
list = list->link;
}
}
printf(*\n");

11.20 B Graphs

Now, the complete C program to see the nodes reachable from each of the nodes in
the graph can be written as shown below:

Example 11.8: Program to print nodes reachable from a vertex (bfs using adjacency list)

#include <stdio.h>
#include <stdlib.h>
struct node

it _
int info;
struct node *link;

3
typedef struct node *NODE;

/* Insert: Example 8.2: Function to get a node */

/* Insert: Example 8.6: Function to insert an element into queue */

/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.6: Function to delete an element from front end of queue */

/* Insert: Example 11.7: Function to traverse the graph in BFS (adjacency list) */

void main()

{
int n, i, source;
NODE a[10];

printf(“Enter the number of nodes :);
scanf(“%d”, &n);

for (i=0;i<n;i++) afi] = NULL,; I/ Graph is empty to start with
read_adjacency _list(a, n);

for (source = 0; source < n; source++)
bfs(a, n, source);

Data Structures using C - 11.21

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

© 0 al0l] —[IT F>[2TA
afl]) —{2] >3 [
a2l —3 |~

9 g a[3]‘/

Given graph Adjacency linked list

Input

Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2
Enter nodes adjacentto 0: 1 2

Enter the number of nodes adjacent 1: 2
Enter nodes adjacentto 1: 2 3

Enter the number of nodes adjacent 2: 1
Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0
Enter nodes adjacent to 3:

Output

The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
23
3

11.4.2 Depth First Search (DFS)

The depth first search is a method of traversing the graph by visiting each node of the
graph in a systematic order. As the name implies depth-first-search means “to search
deeper in the graph”. Now, let us see “What is depth first search (DFS)?”

Definition: In DFS, a vertex u is picked as source vertex and is visited. The vertex u
at this point is said to be unexplored. The exploration of the vertex u is postponed and
a vertex v adjacent to u is picked and is visited. Now, the search begins at the vertex

11.22 B Graphs

v. There may be still some nodes which are adjacent to u but not visited. When the
vertex v is completely examined, then only u is examined. The search will terminate
when all the vertices have been examined.

Note: The search continues deeper and deeper in the graph until no vertex is adjacent
or all the vertices are visited. Hence, the name DFS. Here, the exploration of a node is
postponed as soon as a new unexplored node is reached and the examination of the
new node begins immediately.

Design methodology The iterative procedure to traverse the graph in DFS is shown
below:

Step 1: Select node u as the start vertex (select in alphabetical order), push u onto
stack and mark it as visited. We add u to S for marking

Step 2: While stack is not empty
For vertex u on top of the stack, find the next immediate adjacent vertex.
if v is adjacent
if a vertex v not visited then
push it on to stack and number it in the order it is pushed.
mark it as visited by adding vto S
else
ignore the vertex
end if
else
remove the vertex from the stack
number it in the order it is popped.
end if
end while

Step 3: Repeat step 1 and step 2 until all the vertices in the graph are considered

Example 11.9: Traverse the following graph using DFS and display the nodes reachable
from a given source vertex

Data Structures using C - 11.23

Solution: Since vertex a is the least in alphabetical order, it is selected as the start

vertex. Follow the same procedure as we did in BFS. But, there are two changes:

¢ Instead of using a queue, we use stack

¢ In BFS, all the nodes adjacent and which are not visited are considered. In DFS,
only one adjacent which is not visited earlier is considered. Rest of the procedure
remains same.

Now, the graph can be traversed using DFS as shown in following table

Stack v = adj(s[top]) | Nodes visited | pop(stack)
S
Initial step | a - a
Stagel |a b a,b -
Stage2 |a,b d a, b, d -
Stage3 |a,b,d f a,bdf -
Stage4 |a, b, d,f - ab,df f
Stage5 |a b, d - ab,df d
Stage6 |[a,b - ab,df b
Stage 7 a c a,bdf -
Stage 8 a,C g a,b,dfg -
Stage 9 acg e a,bdfge |-
Stage10 |ac,qg,e - a,b,dfge |e
Stage1l |ac,g - a,b,dfge |g
Stage12 |ac - a,bdfge |c
Stage 13 | a: - a,bdfge |ay

11.4.2.1 Depth First Search (DFS) using adjacency matrix

It is clear from the above example that the stack is the most suitable data structure to
implement DFS. Whenever a vertex is visited for the first time, that vertex is pushed on
to the stack and the vertex is deleted from the stack when a dead end is reached and the
search resumes from the vertex that is deleted most recently. If there are no vertices
adjacent to the most recently deleted vertex, the next node is deleted from the stack and
the process is repeated till all the vertices are reached or till the stack is empty.

The recursive function can be written as shown below: (Assuming adjacency matrix a,
number of vertices n and array s as global variables)

11.24 B Graphs

Example 11.10: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

void dfs(int u)
o
intv;
s[u] = 1;

printf("%d ", u);

for (v=0; v <n; v++)
if (a[u][v] == 1 && s[v] == 0) dfs(v);

}

The complete program that prints the nodes reachable from each of the vertex given in
the graph can be written as shown below:

Example 11.11: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>
int a[10][10], s[10], n; // Global variables

/[* Insert: Example 11.1: Function to read an adjacency matrix*/
/* Insert: Example 11.10: Function to traverse the graph in DFS */

void main()

{

int i, source;

printf("Enter the number of nodes in the graph : *);
scanf("%d", &n);

printf("Enter the adjacency matrix:\n");
read_adjacency_matrix(a, n);

for (source = 0; source < n; source++)

{
for (i=0;i<n;i++)s[i] =0;
printf("\nThe nodes reachable from %d: ", source);
dfs(source);

}

Data Structures using C - 11.25

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

0O (D

(2 (3

Given graph
Output
Enter the number of nodes: 4
Enter the adjacency matrix:
0110
0011
0001
0000
The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2
The nodes visited from 3: 3

123
23
3

W N PO

ol|lo|o|o|o
ololo|r|-
ololrlr|r
olr|r|Io|w

Adjacency matrix

11.4.2.2 Depth First Search (DFS) using adjacency linked list

The procedure remains same. But, instead of using adjacency matrix, we use
adjacency list. The recursive function can be written as shown below: (Assuming
adjacency list a, number of vertices n and array s as global variables.)

Example 11.12: Program to print nodes reachable from a vertex (dfs - adjacency list)

void dfs(int u)
o
intv;
NODE temp;
s[u] =1,

printf("%d ", u);

for (temp = afu]; temp = NULL; temp = temp->link)
if (s[temp->info] == 0) dfs(temp->info);

11.26 B Graphs

The complete program that prints the nodes reachable from each of the vertex given in
the graph using DFS represented using adjacency list can be written as shown below:

Example 11.13: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>
#include <stdlib.h>

struct node

t .
int info;
struct node *link;

k

typedef struct node *NODE;

NODE a[10];
int s[10], n; /I Global variables

/* Insert: Example 8.2: Function to get a node */
/I* Insert: Example 8.6: Function to insert an element into queue */
/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.12: Function to traverse the graph in DFS */
void main()

{

int I, source;

printf("Enter the number of nodes in the graph : ");
scanf("%d", &n);

printf("Enter the adjacency list:\n");
read_adjacency _list(a, n);

for (source = 0; source < n; source++)

{
for (i=0;i<n;i++) s[i] =0;
printf("\nThe nodes reachable from %d: ", source);
dfs(source);

}

Data Structures using C - 11.27

Now, let us see how to obtain the nodes reachable from each node of the following
graph using the above program:

(0 @ a[0]

a[1]
a[2]

9 g a[3]

Given graph

Input

Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2
Enter nodes adjacentto 0: 1 2

Enter the number of nodes adjacent 1: 2
Enter nodes adjacentto 1: 2 3

Enter the number of nodes adjacent 2: 1
Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0
Enter nodes adjacent to 3:

Output

The nodes visited from 0: 0
The nodes visited from 1: 1
The nodes visited from 2: 2

3

123
23
3

The nodes visited from 3:

Exercises

1)

2)
3)
4)
5)
6)

AT 2T
— T ET
—[3 1+

/

Adjacency linked list

Define the terms: a) vertex b) edge c¢) graph d) directed graph

e) undirected graph

Define the terms: a) self-loop (or self-edge) b) multigraph c¢) complete graph
c) length of the path

Define the terms: a) cycle (circuit) b) Connected graph c) disconnected graph
What are the different methods of representing a graph?

What is an adjacency matrix? explain with example

Define the terms: a) path b) simple path

11.28 B Graphs

7) What is an adjacency list? Explain with example

8) What is a weighted graph?

9) How the weighted graph can be represented?

10) What is cost adjacency matrix? What is cost adjacency linked list?

11) What is graph traversal? Explain different graph traversal techniques

12) What is breadth first search (BFS)?”

13) Traverse the following graph by breadth-first search and print all the vertices
reachable from start vertex a. Resolve ties by the vertex alphabetical order.

14)Write a C function to show the nodes visited using BFS traversal (adjacency matrix)

15) Write a C function to show the nodes visited using BFS traversal (adjacency list)

16) What is depth first search (DFS)?”

17) Traverse the following graph using DFS and display the nodes reachable from a given
source vertex

18) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)
19) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)

