
Chapter 11: Graphs

11.1 Introduction

In this chapter, let us concentrate another important and non-linear data structure called

graph. In this chapter, we discuss basic terminologies and definitions, how to represent

graphs and how graphs can be traversed.

11.2 Graph Theory terminology

First, let us see “What is a vertex?”

Definition: A vertex is a synonym for a node. A vertex is normally represented by a

circle. For example, consider the following figure:

Fig Vertices

In the above figure, there are four nodes identified by 1, 2, 3, 4. They are also called

vertices and normally denoted by a set V = {1, 2, 3, 4}.

Now, let us see “What is an edge?”

Definition: If u and v are vertices, then an arc or a line joining two vertices u and v is

called an edge.

Example 1: Consider the figure:

 Definitions

 Terminologies

 Matrix and Adjacency List Representation of Graphs

 Elementary Graph operations

 Traversal methods:

 Breadth First Search

 Depth First Search

What are we studying in this chapter?

3

2 4

0

1

6

0
1

11.2  Graphs

Observe the following points from above figure:

 There is no direction for the edge between vertex 1 and vertex 6 and hence it is

undirected edge.

 The undirected edge is denoted by an ordered pair (1, 6) where 1 and 6 are called end

points of the edge (1, 6). In general, if e = (u, v), then the nodes u and v are called end

points of directed edge.

 In this graph, edge (1, 6) is same as edge (6, 1) since there is no direction associated

with that edge. So, (u, v) and (v, u) represent same edge.

Example 2: consider the figure:

Observe the following points from above figure:

 There is a direction for the edge originating at vertex 1 (called tail of the edge) and

heading towards vertex 6 (called head of the edge) and hence it is called directed

edge.

 The directed edge is denoted by the directed pair <1, 6> where 1 is called tail of the

edge and 6 is the head of the edge. So, the directed pair <1, 6> is not same as directed

pair <6, 1>.

 In general, if a directed edge is represented by directed pair <u, v>, u is called the tail

of the edge and v is the head of the edge. So, the directed pair <u, v> is different from

the directed pair <v, u>. So, <u, v> and <v, u> represent two different edges.

Now, let us see “What is a graph?”

Definition: Formally, a graph G is defined as a pair of two sets V and E denoted by

 G = (V, E)

where V is set of vertices and E is set of edges. For example, consider the graph shown

below:

6

0
1

3

2
5

4

0

6

0
1 Here, graph G = (V, E) where

 V = {1, 2, 3, 4, 5, 6} is set of vertices

 E = { <1, 6>, <1, 2>, <2, 3>, <4, 3>, <5, 3>, <5, 6>,

<6, 4> } is set of directed edges

Note:

 |V| = |{1, 2, 3, 4, 5, 6}| = 6 represent the number of

vertices in the graph.

 Data Structures using C - 11.3

 |E| = |{<1, 6>, <1, 2>, <2, 3>, <4, 3>, <5, 3>, <5, 6>, <6, 4> }| = 7 represent the

number of edges in the graph.

Now, let us see “What is a directed graph? What is an undirected graph?”

Definition: A graph G = (V, E) in which every edge is directed is called a directed graph.

The directed graph is also called digraph. A graph G = (V, E) in which every edge is

undirected is called an undirected graph. Consider the following graphs:

Now let us see “What is a self-loop (or self-edge)?

Definition: A loop is an edge which starts and ends on the

same vertex. A loop is represented by an ordered pair (i, i).

This indicates that the edge originates and ends in the same

vertex. A loop is also called self-edge or self-loop. In the

given graph shown below, there are two self-loops

namely, <1, 1> and <4, 4>.

Now, let us see “What is a multigraph?”

5

3 2

8 4

0

6

0

1

7

2

4

0
1

0

0

1

0

2

0

Here, graph G = (V, E) where

 V = {0, 1, 2} is set of vertices

 E = {<0, 1>, <1, 0>, <1, 2>} is set of edges

Note: Since all edges are directed it is a directed graph.

In directed graph we use angular brackets < and > to

represent an edge

Here, graph G = (V, E) where

 V = {1, 2, 3, 4, 5, 6, 7, 8} is set of vertices

 E = {(1, 5), (1, 6), (5, 7), (6, 8), (6, 4), (8, 3), (8, 2)} is

set of edges

Note: Since all edges are undirected, it is an undirected

graph. In undirected graph we use parentheses (and) to

represent an edge (u, v).

self-loop self-loop

11.4  Graphs

Definition: A graph with multiple occurrence of the

same edge between any two vertices is called multigraph.

Here, there are two edges between the nodes 1 and 4 and

there are three edges between the nodes 4 and 3.

Now, let us see “What is a complete graph?”

Definition: A graph G = (V, E) is said to be a complete graph, if there exists an edge

between every pair of vertices. The graph (a) below is complete. Observe that in a

complete graph of n vertices, there will be n(n-1)/2 edges. Substituting n = 4, we get 6

edges. Even if one edge is removed as shown in graph (b) below, it is not complete graph.

Now, let us see “What is a path?”

Definition: Let G = (V, E) be a graph. A

path from vertex u to vertex v in an

undirected graph is a sequence of adjacent

vertices (u, v0, v1, v2,….vk, v) such that:

(u, v0), (v0, v1),….(vk, v) are the edges in

G. Consider the following graph:

In the graph, the path from vertex 1 to 4

is denoted by: 1, 2, 3, 4 which can also be

written as (1, 2), (2, 3), (3, 4).

3 2

4

0
1

multiple edges

3 2

4

0
1

3 2

4

0
1

Complete graph

Definition: Let G = (V, E) be a graph. A

path from vertex u to vertex v in a directed

graph is a sequence of adjacent vertices <u,

v0, v1, v2,….vk, v> such that <u, v0>, <v0,

v1>,….<vk, v> are the edges in G. Consider

the following graph:

In the graph, the path from vertex 1 to 3 is

denoted by 1, 4, 2, 3 which can also be

written as <1, 4>, <4, 2>, <2, 3>

3 2

4

0
1

3 2

4

0
1

Not a complete graph

 Data Structures using C - 11.5

Now, let us see “What is simple path?”

Definition: A simple path is a path in which all vertices except possibly the first and last

are distinct. Consider the undirected and directed graph shown below:

Ex 1: In the graph, the path 1, 2, 3, 4 is

simple path since each node in the

sequence is distinct.

Ex2: In the graph, the path 1, 2, 3, 2 is not

a simple path since the nodes in sequence

are not distinct. The node 2 appears twice

in the path

Now, let us see “What is length of the path?”

Definition: The length of the path is the number of edges in the path.

Ex 1: In the above undirected graph, the path (1, 2, 3, 4) has length 3 since there are three

edges (1, 2), (2, 3), (3, 4). The path 1, 2, 3 has length 2 since there are two edges (1, 2),

(2, 3).

Ex 2: In the above directed graph, the path <1, 2, 3, 4> has length 3 since there are three

edges <1, 2>, <2, 3>, <3, 4>. The path <1, 4, 2> has length 2 since there are two edges

<1, 4>, <4, 2>.

Now, let us “Define the terms cycle (circuit)?”

Definition: A cycle is a path in which the first and last vertices are same.

For example, the path <4, 2, 3, 4> shown in above directed graph is a cycle, since the first

node and last node are same. It can also be represented as <4, 2>, <2, 3>, <3, 4> <4, 2>.

Note: A graph with at least one cycle is called a cyclic graph and a graph with no cycles

is called acyclic graph. A tree is an acyclic graph and hence it has no cycle.

Now, let us see “What is a connected graph?”

3 2

4

0
1

3 2

4

0
1

Ex 1: In the graph, the path 1, 4, 2, 3 is

simple path since each node in the

sequence is distinct.

Ex 2: The sequence 1, 4, 3 is not a path

since there is no edge <4, 3> in the graph.

11.6  Graphs

Definition: In an undirected graph G, two vertices u and v are said to be connected if

there exists a path from u to v. Since G is undirected, there exists a path from v to u also.

A graph G (directed or undirected) is said to be connected if and only if there exists a

path between every pair of vertices.

For example, the graphs shown in figure below are connected graphs.

Figure Connected graphs

Now, let us see “What is a disconnected graph?”

Definition: Let G = (V, E) be a graph. If there exists at least one vertex in a graph that

cannot be reached from other vertices in the graph, then such a graph is called

disconnected graph. For example, the graph shown below is a disconnected graph.

 Not connected

11.3 Representation of graph

Now, let us see “What are the different methods of representing a graph?” The graphs can

be represented in two different methods:

Let us see “What is an adjacency matrix? explain with example”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges. Let

N be the number of vertices in graph G. The adjacency matrix A of a graph G is formally

defined as shown below:

Adjacency matrix

Adjacency linked list
Representation of graph

3 2

4

0
1

3 2

4

0
1

3 2

4

0
1

5

0
3 2

4

0
1 Since vertex 1 is

not reachable

from 3, the graph

is not connected

graph.

 Data Structures using C - 11.7

 A[i][j] =

 It is clear from the definition that an adjacency matrix of a graph with n vertices is a

Boolean square matrix with n rows and n columns with entries 1’s and 0’s (bit-

matrix)

 In an undirected graph, if there exists an edge (i, j) then a[i][j] and a[j][i] is made 1

since (i, j) is same as (j, i)

 In a directed graph, if there exists an edge <i, j> then a[i][j] is made 1 and a[j][i] will

be 0.

 If there is no edge from vertex i to vertex j, then a[i][j] will be 0.

Note: The above definition is true both for directed and undirected graph. For example,

following figures shows the directed and undirected graphs along with equivalent

adjacency matrices:

 (a) Directed graph Adjacency matrix

 (b) Undirected graph Adjacency matrix

Fig. Graphs and equivalent adjacency matrices

Now, let us see “What is an adjacency list? explain with example”

1 if there is an edge from vertex i to vertex j.

0 if there is no edge from vertex i to vertex j.

 0 1 2 3

0 0 1 1 1

1 0 0 1 0

2 0 0 0 1

3 0 1 0 0

 0 1 2 3

0 0 1 1 0

1 1 0 1 1

2 1 1 0 1

3 0 1 1 0

3 2

1

0
0

3 2

1

0
0

11.8  Graphs

Definition: Let G = (V, E) be a graph. An adjacency linked list is an array of n linked

lists where n is the number of vertices in graph G. Each location of the array represents a

vertex of the graph. For each vertex u  V, a linked list consisting of all the vertices

adjacent to u is created and stored in A[u]. The resulting array A is an adjacency list.

Note: It is clear from the above definition that if i, j and k are the vertices adjacent to the

vertex u, then i, j and k are stored in a linked list and starting address of linked list is

stored in A[u] as shown below:

For example, figures below shows the directed and undirected graphs along with

equivalent adjacency linked list:

 (a) Directed graph Adjacency linked list

 (b) Undirected graph Adjacency linked list

Fig.: Graphs and equivalent adjacency linked lists

A

i

j

k

.

.

u
.

.

3

A

2

1

0

1

2

3

2

3

1

3 2

1

0
0

3 2

1

0
0

A

1

0

1

2

3

0

0

1

3

2

3

1

2

2

nodes adjacent to 0

nodes adjacent to 1

nodes adjacent to 2

nodes adjacent to 3

nodes adjacent to 0

nodes adjacent to 1

nodes adjacent to 2

nodes adjacent to 3

 Data Structures using C - 11.9

Now, let us see “Which graph representation is best?” The graph representation to be

used depends on the following factors:

 Nature of the problem

 Algorithm used for solving

 Type of the input.

 Number of vertices and edges:

 If a graph is sparse, less number of edges are present. In such case, the

adjacency list has to be used because this representation uses lesser space

when compared to adjacency matrix representation, even though extra

memory is consumed by the pointers of the linked list.

 If a graph is dense, the adjacency matrix has to be used when compared with

adjacency list since the linked list representation takes more memory.

Note: So, based on the nature of the problem and based on whether the graph is sparse or

dense, one of the two representations can be used.

Now, let us see “What is a weighted graph?”

Definition: A graph in which a number is assigned to each

edge in a graph is called weighted graph. These numbers

are called costs or weights. The weights may represent the

cost involved or length or capacity depending on the

problem.

 For example, in the following graph shown in figure

the values 10, 20, 30 and 40 are the weights associated with

four edges <1,3>, <1,2>, <3,4> and <2,4>

Let us see “How the weighted graph can be represented?” The weighted graph can be

represented using adjacency matrix as well as adjacency linked list. The adjacency matrix

consisting of costs (weights) is called cost adjacency matrix. The adjacency linked list

consisting of costs (weights) is called cost adjacency linked list. Now, let us see “What is

cost adjacency matrix?”

Definition: Let G = (V, E) be the graph where V is set of vertices and E is set of edges

with n number of vertices. The cost adjacency matrix A of a graph G is formally defined

as shown below:

A[i][j] =

2
4

0

3

0
1

10

20
30

40

w if there is a weight associated with edge from vertex i to vertex j.

∞ if there is no edge from vertex i to vertex j.

11.10  Graphs

It is clear from the above definition that

 The element in ith row and jth column is weight w provided there exist an edge

from ith vertex to jth vertex with cost w

 ∞ if there is no edge from vertex i to vertex j.

 The cost from vertex i to vertex i is ∞ (assuming there is no loop).

For example, the weighted graph and its cost adjacency matrix is shown below:

 (a) Weighted graph (b) Adjacency matrix

Figure A weighted digraph and the cost adjacency matrix

For the undirected graph, the elements of the cost adjacency matrix are obtained using the

following definition:

 A[i][j] =

The undirected graph and its equivalent adjacency matrix is shown below:

 (a) (b)

Figure: Weighted undirected graph and the adjacency matrix

Note: The cost adjacency matrix for the undirected graph is symmetric (i.e., a[i, j] is

same as a[j, i]) whereas the cost adjacency matrix for a directed graph may not be

symmetric.

Note: For some of the problems, it is more convenient to store 0’s in the main diagonal of

cost adjacency matrix instead of ∞.

 0 1 2 3

0 ∞ 25 10 ∞

1 25 ∞ 15 20

2 10 15 ∞ 30

3 ∞ 20 30 ∞

30

25
15

20

10 0 1 2 3

0 ∞ 10 20 ∞

1 ∞ ∞ 15 ∞

2 ∞ ∞ ∞ 30

3 ∞ 25 ∞ ∞

3 2

1

0
0

w if there is a weight associated with edge (i, j) or (j, i)

∞ if there is no edge from vertex i to vertex j.

30

20
15

10

Diagonal values can

be replaced by 0’s

3 2

1

0
0

Note: Diagonal values

can be replaced by 0’s

 Data Structures using C - 11.11

Now, let us see “What is cost adjacency linked list?”

Definition: Let G = (V, E) be a graph where V is set of vertices and E is set of edges

with n number of vertices. A cost adjacency linked list is an array of n linked lists. For

each vertex u  V, A[u] contains the address of a linked list. All the vertices which are

adjacent from vertex u are stored in the form of a linked list (in an arbitrary manner) and

the starting address of first node is stored in A[u]. If i, j and k are the vertices adjacent to

the vertex u, then i, j and k are stored in a linked list along with the weights in A[u] as

shown below:

For example, the figure below shows the weighted diagraph and undirected graph along

with equivalent adjacency list.

 (a) weighted digraph (b) adjacency list

 (c) weighted undirected graph (d) adjacency list

Figure weighted graph and equivalent adjacency list

k, wk

A

i, wi

.

.

u
.

.

j, wj

0

1

2

3

1,10

2,20

2,15

3,30

1,25

0

1

2

3

1,10

2,20

0,10

0,20

2,15

3,25

1,15

3,30

 1,25

2,30

30

25
15

20

10

3 2

1

0
0

30

25
15

20

10

3 2

1

0
0

11.12  Graphs

Now, the function to read an adjacency matrix can be written as shown below:

Example 11.1: Function to read adjacency matrix

void read_adjacency_matrix(int a[10][10], int n)

{

 int i, j;

 for (i = 0; i < n; i++)

 {

 for (j = 0; j < n; j++)

 {

 scanf(“%d”, &a[i][j]);

 }

 }

}

The function to read adjacency list can be written as shown below:

Example 11.2: Function to read adjacency list

void read_adjacency_list (NODE a[], int n)

{

 int i, j, m, item;

 for (i = 0; i < n; i++)

 {

 printf("Enter the number of nodes adjacent to %d:", i);

 scanf("%d", &m);

 if (m ==0) continue;

 printf("Enter nodes adjacent to %d : ", i);

 for (j = 0; j < m; j++)

 {

 scanf("%d", &item);

 a[i] = insert_rear(item, a[i]);

 }

 }

}

 Data Structures using C - 11.13

11.4 Graph traversals

Now, we concentrate on a very important topic namely graph traversal techniques and

see “What is graph traversal? Explain different graph traversal techniques”

Definition: The process of visiting each node of a graph systematically in some order

is called graph traversal. The two important graph traversal techniques are:

11.4.1 Breadth First Search (BFS)

Now, let us see “What is breadth first search (BFS)?”

Definition: The breadth first search is a method of traversing the graph from an

arbitrary vertex say u. First, visit the node u. Then we visit all neighbors of u. Then

we visit the neighbors of neighbors of u and so on. That is, we visit all the

neighboring nodes first before moving to next level neighbors. The search will

terminate when all the vertices have been visited.

BFS traversal can be implemented using a queue. As we visit a node, it is inserted

into queue. Now, delete a node from a queue and see the adjacent nodes which have

not been visited. The unvisited nodes are inserted into queue and marked as visited.

Deleting and inserting operations as discussed are continued until queue is empty.

Now, let us take an example and see how BFS traversal can be used to see what are

all the nodes which are reachable from a given source vertex.

Example 11.3: Traverse the following graph by breadth-first search and print all the

vertices reachable from start vertex a. Resolve ties by the vertex alphabetical order.

Solution: It is given that source vertex is a. Perform the following activities:

Breadth First Search (BFS)

Depth First Search (DFS)

f b c g

d a e

11.14  Graphs

Initialization: Insert source vertex a into queue and add a to S as shown below:

(i) (ii) (iii)

 u = del(Q) v = adj. to u Nodes visited S queue

Initialization - - a a

Step 1: i): Delete an element a from queue

 ii): Find the nodes adjacent to a but not in S: i.e., b, c, d and e

iii): Add b, c, d and e to S, insert into queue as shown in the table:

 (i) (ii) (iii)

 u = del(Q) v = adj. to u Nodes visited S queue

 - - a a

Step 1 a b, c, d, e a, b, c, d, e b, c, d, e

Step 2: i): Delete b from queue

 ii): Find nodes adjacent to b but not in S: i.e., f

 iii): Add f to S and insert f into queue as shown in table:

 (i) (ii) (iii)

 u = del(Q) v = adj. to u Nodes visited S queue

 - - a a

Step 1 a b, c, d, e a, b, c, d, e b, c, d, e

Step 2 b f a, b, c, d, e, f c, d, e, f

Stage 3: i) : Delete c from queue

 ii): Find nodes adjacent to c but not in S: i.e., g

 iii): Add g to S, insert g into queue as shown in table

 (i) (ii) (iii)

 u = del(Q) v = adj. to u Nodes visited S queue

 - - a a

Step 1 a b, c, d, e a, b, c, d, e b, c, d, e

Step 2 b f a, b, c, d, e, f c, d, e, f

Step 3 c g a, b, c, d, e, f, g d, e, f

The remaining steps are shown in the following table:

 Data Structures using C - 11.15

 (i) (ii) (iii)

Thus, the nodes that are reachable from source a: a, b, c, d, e, f, g

11.4.1.1 Breadth First Search (BFS) using adjacency matrix

The above activities are shown below in the form of an algorithm along with

pseudocode in C when graph is represented as an adjacency matrix.

 no node is visited to start with // int s [10] = {0};

insert source u to q // f = 0, r = -1, q[++r] = u

print u // print u

mark u as visited i.e., add u to S // s[u] = 1

while queue is not empty // while f <= r

 Delete a vertex u from q // u = q[f++]

 For every v adjacent to u // for each v, if a[u][v] == 1

 If v is not visited // if s[v] == 0

 print v // print v

mark v as visited // s[v] = 1

 Insert v to queue // q[++r] = v

 end if // endif

 // endif

 end while // end while

The above algorithm can be written using C function as shown below:

 u = del(Q) v = adj. to u

Nodes visited S queue

Initialization - - a a

Step 1 a b, c, d, e a, b, c, d, e b, c, d, e

Step 2 b a, d, f a, b, c, d, e, f c, d, e, f

Step 3 c a, g a, b, c, d, e, f, g d, e, f, g

Step 4 d a, b, f a, b, c, d, e, f, g e, f, g

Step 5 e a,g a, b, c, d, e, f, g f, g

Step 6 f b, d a, b, c, d, e, f, g g

Step 7 g c. e a, b, c, d, e, f, g empty

11.16  Graphs

Example 11.4: C function to show the nodes visited using BFS traversal

void bfs(int a[10][10], int n, int u)

{

 int f, r, q[10], v;

int s[10] = {0}; /* initialize all elements in s to 0 i.e, no node is visited */

 printf("The nodes visited from %d : ", u);

 f = 0, r = -1; // queue is empty

 q[++r] = u; // Insert u into queue

 s[u] = 1; // insert u to s

 printf(“%d “, u); // print the node visited

 while (f <= r)

 {
 u = q[f++]; // delete an element from q

 for (v = 0; v < n; v++)

 {

 if (a[u][v] == 1) // If v is adjacent to u

 {
 if (s[v] == 0) // If v is not in S i.e., v has not been visited

 {

 printf(“%d “, v); // print the node visited

 s[v] = 1; // add v to s, mark it as visited

 q[++r] = v; // Insert v into queue

 }

 }

 }

 }
 printf(“\n”);

}

Now, the C program that prints all the nodes that are reachable from a given source

vertex is shown below:

Example 11.5: Algorithm to traverse the graph using BFS

#include <stdio.h>
/* Insert: Example 11.1: Function to read an adjacency matrix*/

/* Insert: Example 11.4: Function to traverse the graph in BFS */

 Data Structures using C - 11.17

void main()

{

 int n, a[10][10], source, i, j;

 printf(“Enter the number of nodes : “);

 scanf(“%d”, &n);

 printf(“Enter the adjacency matrix:\n”);

 for (i = 0; i < n; i++)

 {

 for (j = 0; j < n; j++) scanf(“%d”, &a[i][j]);

 }

 for (source = 0; source < n; source++)

 bfs(a, n, source);

}

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

 Given graph Adjacency matrix

Output

Enter the number of nodes: 4

Enter the adjacency matrix:

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

The nodes visited from 0: 0 1 2 3

The nodes visited from 1: 1 2 3

The nodes visited from 2: 2 3

The nodes visited from 3: 3

3 2

1

0
0

 0 1 2 3

0 0 1 1 0

1 0 0 1 1

2 0 0 0 1

3 0 0 0 0

11.18  Graphs

11.4.1.2 Breadth First Search (BFS) using adjacency list

We know that BFS traversal uses queue data structure which require insert rear

function and delete front function. We can use insert rear function given in example

8.6. But, the delete front function shown in example 8.5 is modified after deleting the

printf() function.

Example 11.6: C function to delete an item from the front end of singly linked list

NODE delete_front(NODE first)

{

NODE temp;

 if (first == NULL) return NULL;

 temp = first; /* Retain address of the node to be deleted */

 temp = temp->link; /* Obtain address of the second node */

 free(first); /* delete the front node */

 return temp; /* return address of the first node */

}

The algorithm for BFS along with pseudocode when a graph is represented as an

adjacency list can be written as shown below:

 no node is visited to start with // int s [10] = {0}

insert source u to q // q = NULL, q = insert_rear(u, q);

mark u as visited i.e., add u to S // s[u] = 1, printf(“%d “, u);

while queue is not empty // while q != NULL

u = q->info;

 Delete a vertex u from q // q = delete_front(q),

list = a[u]; // list of vertices adj. to u

 Find vertices v adjacent to u // while (list != NULL)

 v = list->info;

 If v is not visited // if (s[v] == 0)

 print v // print v

mark v as visited // s[v] = 1

 Insert v to queue // q = insert_rear(v, q);

 end if // endif

 list = list->link

 // end while

 end while // end while

 Data Structures using C - 11.19

Now, the complete C function to traverse the graph using BFS when a graph is

represented as adjacency list can be written as shown below:

Example 11.7: C function to show the nodes visited using BFS traversal

void bfs(NODE a[], int n, int u)

{

 NODE q, list;

 int v;

int s[10] = {0}; /* initialize all elements in s to 0 i.e, no node is visited */

printf("The nodes visited from %d : ", u);

 q = NULL; // queue is empty

 q = insert_rear(u, q); // Insert u into queue

 s[u] = 1; // insert u to s

 printf("%d ", u); // print the node visited

 while (q != NULL) // as long as queue is not empty

 {

 u = q->info; // delete a node from queue

 q = delete_front(q);

 list = a[u]; // obtain nodes adjacent to u

 while (list != NULL) // as long as adjacent nodes exist

 {
 v = list->info; // v is the node adjacent to u

 if (s[v] == 0) // If v is not in S i.e., v has not been visited

 {

 printf("%d ", v); // print the node visited

 s[v] = 1; // add v to s, mark it as visited

 q = insert_rear(v, q); // Insert v into queue

 }

 list = list->link;

 }

 }

 printf("\n");

}

11.20  Graphs

Now, the complete C program to see the nodes reachable from each of the nodes in

the graph can be written as shown below:

Example 11.8: Program to print nodes reachable from a vertex (bfs using adjacency list)

#include <stdio.h>

#include <stdlib.h>

struct node

{
 int info;

 struct node *link;

};

typedef struct node *NODE;

/* Insert: Example 8.2: Function to get a node */

/* Insert: Example 8.6: Function to insert an element into queue */

/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.6: Function to delete an element from front end of queue */

/* Insert: Example 11.7: Function to traverse the graph in BFS (adjacency list) */

void main()

{

 int n, i, source;

 NODE a[10];

 printf(“Enter the number of nodes : “);

 scanf(“%d”, &n);

 for (i = 0; i < n; i++) a[i] = NULL; // Graph is empty to start with

read_adjacency_list(a, n);

 for (source = 0; source < n; source++)

 bfs(a, n, source);

}

 Data Structures using C - 11.21

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

 Given graph Adjacency linked list

Input
Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2

Enter nodes adjacent to 0: 1 2

Enter the number of nodes adjacent 1: 2

Enter nodes adjacent to 1: 2 3

Enter the number of nodes adjacent 2: 1

Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0

Enter nodes adjacent to 3:

Output
The nodes visited from 0: 0 1 2 3

The nodes visited from 1: 1 2 3

The nodes visited from 2: 2 3

The nodes visited from 3: 3

11.4.2 Depth First Search (DFS)

The depth first search is a method of traversing the graph by visiting each node of the

graph in a systematic order. As the name implies depth-first-search means “to search

deeper in the graph”. Now, let us see “What is depth first search (DFS)?”

Definition: In DFS, a vertex u is picked as source vertex and is visited. The vertex u

at this point is said to be unexplored. The exploration of the vertex u is postponed and

a vertex v adjacent to u is picked and is visited. Now, the search begins at the vertex

3 2

1

0
0

 1

0
 2

0
 2

0
 3

0
 3

0

a[0]

a[1]

a[2]

a[3]

11.22  Graphs

v. There may be still some nodes which are adjacent to u but not visited. When the

vertex v is completely examined, then only u is examined. The search will terminate

when all the vertices have been examined.

Note: The search continues deeper and deeper in the graph until no vertex is adjacent

or all the vertices are visited. Hence, the name DFS. Here, the exploration of a node is

postponed as soon as a new unexplored node is reached and the examination of the

new node begins immediately.

Design methodology The iterative procedure to traverse the graph in DFS is shown

below:

Step 1: Select node u as the start vertex (select in alphabetical order), push u onto

 stack and mark it as visited. We add u to S for marking

Step 2: While stack is not empty

 For vertex u on top of the stack, find the next immediate adjacent vertex.

 if v is adjacent

 if a vertex v not visited then

 push it on to stack and number it in the order it is pushed.

 mark it as visited by adding v to S

 else

 ignore the vertex

 end if

 else

 remove the vertex from the stack

 number it in the order it is popped.

 end if

 end while

Step 3: Repeat step 1 and step 2 until all the vertices in the graph are considered

Example 11.9: Traverse the following graph using DFS and display the nodes reachable

from a given source vertex

f b c g

d a e

 Data Structures using C - 11.23

Solution: Since vertex a is the least in alphabetical order, it is selected as the start

vertex. Follow the same procedure as we did in BFS. But, there are two changes:

 Instead of using a queue, we use stack

 In BFS, all the nodes adjacent and which are not visited are considered. In DFS,

only one adjacent which is not visited earlier is considered. Rest of the procedure

remains same.

Now, the graph can be traversed using DFS as shown in following table

11.4.2.1 Depth First Search (DFS) using adjacency matrix

It is clear from the above example that the stack is the most suitable data structure to

implement DFS. Whenever a vertex is visited for the first time, that vertex is pushed on

to the stack and the vertex is deleted from the stack when a dead end is reached and the

search resumes from the vertex that is deleted most recently. If there are no vertices

adjacent to the most recently deleted vertex, the next node is deleted from the stack and

the process is repeated till all the vertices are reached or till the stack is empty.

The recursive function can be written as shown below: (Assuming adjacency matrix a,

number of vertices n and array s as global variables)

 Stack v = adj(s[top]) Nodes visited

S

pop(stack)

Initial step a - a

Stage 1 a b a, b -

Stage 2 a, b d a, b, d -

Stage 3 a, b, d f a, b, d, f -

Stage 4 a, b, d, f - a, b, d, f f

Stage 5 a, b, d - a, b, d, f d

Stage 6 a, b - a, b, d, f b

Stage 7 a c a, b, d, f -

Stage 8 a, c g a, b, d, f, g -

Stage 9 a, c, g e a, b, d, f, g, e -

Stage 10 a, c, g, e - a, b, d, f, g, e e

Stage 11 a, c, g - a, b, d, f, g, e g

Stage 12 a, c - a, b, d, f, g, e c

Stage 13 a1 - a, b, d, f, g, e a1,7

11.24  Graphs

Example 11.10: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

void dfs(int u)

{

 int v;

 s[u] = 1;

 printf("%d ", u);

 for (v = 0; v < n; v++)

 {

 if (a[u][v] == 1 && s[v] == 0) dfs(v);

 }

}

The complete program that prints the nodes reachable from each of the vertex given in

the graph can be written as shown below:

Example 11.11: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>

int a[10][10], s[10], n; // Global variables

/* Insert: Example 11.1: Function to read an adjacency matrix*/

/* Insert: Example 11.10: Function to traverse the graph in DFS */

void main()

{

 int i, source;

 printf("Enter the number of nodes in the graph : ");

 scanf("%d", &n);

 printf("Enter the adjacency matrix:\n");

 read_adjacency_matrix(a, n);

 for (source = 0; source < n; source++)

 {

 for (i = 0; i < n; i++) s[i] = 0;

 printf("\nThe nodes reachable from %d: ", source);

 dfs(source);

 }

}

 Data Structures using C - 11.25

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

 Given graph Adjacency matrix

Output

Enter the number of nodes: 4

Enter the adjacency matrix:

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

The nodes visited from 0: 0 1 2 3

The nodes visited from 1: 1 2 3

The nodes visited from 2: 2 3

The nodes visited from 3: 3

11.4.2.2 Depth First Search (DFS) using adjacency linked list

The procedure remains same. But, instead of using adjacency matrix, we use

adjacency list. The recursive function can be written as shown below: (Assuming

adjacency list a, number of vertices n and array s as global variables.)

Example 11.12: Program to print nodes reachable from a vertex (dfs - adjacency list)

void dfs(int u)

{

 int v;

 NODE temp;

 s[u] = 1;

 printf("%d ", u);

 for (temp = a[u]; temp != NULL; temp = temp->link)

 if (s[temp->info] == 0) dfs(temp->info);

}

3 2

1

0
0

 0 1 2 3

0 0 1 1 0

1 0 0 1 1

2 0 0 0 1

3 0 0 0 0

11.26  Graphs

The complete program that prints the nodes reachable from each of the vertex given in

the graph using DFS represented using adjacency list can be written as shown below:

Example 11.13: Program to print nodes reachable from a vertex (dfs - adjacency matrix)

#include <stdio.h>

#include <stdlib.h>

struct node

{

 int info;

 struct node *link;

};

typedef struct node *NODE;

NODE a[10];

int s[10], n; // Global variables

/* Insert: Example 8.2: Function to get a node */

/* Insert: Example 8.6: Function to insert an element into queue */

/* Insert: Example 11.2: Function to read adjacency list */

/* Insert: Example 11.12: Function to traverse the graph in DFS */

void main()

{

 int i, source;

 printf("Enter the number of nodes in the graph : ");

 scanf("%d", &n);

 printf("Enter the adjacency list:\n");

 read_adjacency_list(a, n);

 for (source = 0; source < n; source++)

 {

 for (i = 0; i < n; i++) s[i] = 0;

 printf("\nThe nodes reachable from %d: ", source);

 dfs(source);

 }

}

 Data Structures using C - 11.27

Now, let us see how to obtain the nodes reachable from each node of the following

graph using the above program:

 Given graph Adjacency linked list

Input
Enter the number of nodes: 4

Enter the number of nodes adjacent 0: 2

Enter nodes adjacent to 0: 1 2

Enter the number of nodes adjacent 1: 2

Enter nodes adjacent to 1: 2 3

Enter the number of nodes adjacent 2: 1

Enter nodes adjacent to 2: 3

Enter the number of nodes adjacent 3: 0

Enter nodes adjacent to 3:

Output
The nodes visited from 0: 0 1 2 3

The nodes visited from 1: 1 2 3

The nodes visited from 2: 2 3

The nodes visited from 3: 3

Exercises

1) Define the terms: a) vertex b) edge c) graph d) directed graph

 e) undirected graph

2) Define the terms: a) self-loop (or self-edge) b) multigraph c) complete graph

3) Define the terms: a) path b) simple path c) length of the path

4) Define the terms: a) cycle (circuit) b) Connected graph c) disconnected graph

5) What are the different methods of representing a graph?

6) What is an adjacency matrix? explain with example

3 2

1

0
0

 1

0
 2

0
 2

0
 3

0
 3

0

a[0]

a[1]

a[2]

a[3]

11.28  Graphs

7) What is an adjacency list? Explain with example

8) What is a weighted graph?

9) How the weighted graph can be represented?

10) What is cost adjacency matrix? What is cost adjacency linked list?

11) What is graph traversal? Explain different graph traversal techniques

12) What is breadth first search (BFS)?”

13) Traverse the following graph by breadth-first search and print all the vertices

reachable from start vertex a. Resolve ties by the vertex alphabetical order.

14) Write a C function to show the nodes visited using BFS traversal (adjacency matrix)

15) Write a C function to show the nodes visited using BFS traversal (adjacency list)

16) What is depth first search (DFS)?”

17) Traverse the following graph using DFS and display the nodes reachable from a given

source vertex

18) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)

19) Write a program to print nodes reachable from a vertex (dfs - adjacency matrix)

f b c g

d a e

f b c g

d a e

