
MODULE 3

1) What are addressing modes? Explain each with example.

ANS:

The different addressing modes determine how operands are accessed by the CPU. Each mode

 provides flexibility in referencing memory locaƟons and registers, which allows for more efficient
and versaƟle programming.

 Below are the addressing modes explained in detail:

 1. Register Mode:

 In register mode, the operand is located directly in a processor register. The instrucƟon specifies
the register where the operand resides. This mode is the fastest, as accessing registers is much
quicker than accessing memory.

 Example:

 ADD R1, R2, R3- Here, R1 and R2 hold the source operands, and R3 is the desƟnaƟon register.
The operaƟon ADD adds the contents of R1 and R2 and stores the result in R3.

 2. Absolute/Direct Mode

 In absolute/direct mode, the operand is located at a specific memory address, and this address
is explicitly given in the instrucƟon. This mode is useful when the exact memory locaƟon of the
operand is known.

 Example:

 MOV LOC, R1- The instrucƟon moves the value at memory locaƟon LOC into register R1.

 3. Immediate Mode

In immediate mode, the operand is directly specified in the instrucƟon. The value is a constant or
literal that is directly embedded in the instrucƟon.

 Example:

 ADD #200, R1, R2- This instrucƟon adds the immediate value 200 to the contents of register R1,
and places the result into register R2.- The # symbol indicates that 200 is an immediate operand.

 4. Indirect Mode

 In indirect mode, the instrucƟon specifies a register or memory locaƟon that contains the
effecƟve address of the operand. This mode allows for more flexible access to data by using
pointers.

 Example:

 ADD (R1), R0- The effecƟve address of the operand is in register R1. The processor first reads the
value in R1, which gives the memory address of the operand, and then accesses that memory
address.- The operand is added to the contents of register R0.

 5. Index Mode:

 In index mode, the effecƟve address of the operand is calculated by adding a constant value

 (displacement) to the contents of a register. The register used in this mode is called the index

 register.

 Example:

 MOV 10(R1), R2- The instrucƟon adds 10 to the contents of register R1 to calculate the effecƟve
address. It then accesses the operand at that address and moves it into register R2.

6. RelaƟve Addressing Mode:

 In relaƟve addressing mode, the effecƟve address is determined by adding the displacement to
the program counter (PC). This mode is commonly used for branch instrucƟons.

 Example:

 BRANCH >0 LOOP- This instrucƟon tells the processor to branch to the address of LOOP if the
branch condiƟon is saƟsfied.- The address of LOOP is calculated relaƟve to the program counter
(PC).

 7. Auto-Increment Mode:

 In auto-increment mode, the effecƟve address of the operand is stored in a register. AŌer
accessing the operand, the register is automaƟcally incremented to point to the next item (e.g.,
in a list or array).

 Example:

 MOV (R1)+, R2- The operand is accessed from the address in register R1, and then R1 is
incremented by the size of the operand (oŌen the size of a word or byte).- The value at the
address in R1 is moved into register R2.

8. Auto-Decrement Mode:

 In auto-decrement mode, the register is first decremented, and then the effecƟve address of the

 operand is accessed. This mode is commonly used in stack operaƟons.

 Example:

 MOV -(R1), R2- The instrucƟon decrements the value in register R1 first, then accesses the
memory address pointed to by the updated value of R1.

- The value at the new address is moved into register R2.

2) Explain the basic operaƟon concepts of the computer with a neat diagram.

ANS:

OperaƟng Steps in a Computer System

These steps outline how the processor fetches, decodes, and executes instrucƟons, as well as how
input/output (I/O) operaƟons are handled through interrupts.

Steps for Program ExecuƟon:

1. Program in Memory: The program is loaded into memory, usually through the Input Unit.
The processor will start execuƟon based on the instrucƟons provided in the program.

2. Program Counter (PC) IniƟalizaƟon: ExecuƟon starts when the Program Counter (PC) is set
to point to the first instrucƟon of the program. The PC is responsible for holding the address
of the instrucƟon that needs to be executed next.

3. Fetching InstrucƟon:

o The contents of the PC (address of the next instrucƟon) are transferred to the
Memory Address Register (MAR).

o A Read Control Signal is sent to the memory to fetch the instrucƟon at the address
held in MAR.

4. Memory Access: AŌer the memory access Ɵme has elapsed, the instrucƟon is read from
memory and transferred into the Memory Data Register (MDR).

5. Loading InstrucƟon to InstrucƟon Register (IR): The contents of the MDR are transferred to
the InstrucƟon Register (IR). The instrucƟon is now ready to be decoded and executed.

6. OperaƟon by ALU: If the instrucƟon involves an operaƟon to be performed by the
ArithmeƟc Logic Unit (ALU), the required operands must be obtained.

7. Fetching Operand from Memory:

o If the operand is stored in memory, its address is sent to MAR, and a read cycle is
iniƟated to fetch the operand.

8. Loading Operand to ALU: Once the operand is fetched from memory into the MDR, it is
transferred to the ALU for processing.

9. ALU OperaƟon: AŌer performing the required operaƟons, the ALU produces the result.

10. Storing the Result in Memory: If the result from the ALU needs to be stored back in
memory:

o The result is transferred to the MDR.

o The address where the result should be stored is sent to MAR, and a Write Cycle is
iniƟated to store the result.

11. Update Program Counter: AŌer compleƟng the execuƟon of the current instrucƟon, the PC
is incremented so it points to the next instrucƟon to be executed.

Interrupts:

 Interrupt: An interrupt is a signal from an I/O device requesƟng immediate aƩenƟon from
the processor. When an interrupt is raised, it temporarily halts the current execuƟon and
switches to handle the interrupt.

 Interrupt Service RouƟne (ISR): When an interrupt occurs, the processor executes a
predefined set of instrucƟons called the interrupt service rouƟne to handle the interrupt.
AŌer the interrupt is serviced, the processor returns to the previous program execuƟon.

3) Explain basic performance equaƟons of computer

ANS :

Basic Performance EquaƟon of a Computer

The basic performance equaƟon is used to esƟmate the processor Ɵme required to execute a
program in a computer system. This Ɵme is an important factor when measuring the performance of
a processor, as it directly influences the overall speed of the computer when running a program.

Performance EquaƟon Variables:

 T: Processor Ɵme required to execute a program that has been prepared in a high-level
language.

 N: Number of actual machine language instrucƟons needed to complete the execuƟon. This
includes the total number of instrucƟons, including those in loops and any other operaƟons
performed during program execuƟon.

 S: Average number of basic steps needed to execute one machine instrucƟon. Each step
completes in one clock cycle. These basic steps could include operaƟons like fetching,
decoding, execuƟng, and storing results.

 R: Clock rate of the processor, usually measured in cycles per second (Hertz, Hz). This
indicates the speed at which the processor's clock operates.

ExplanaƟon:

1. Number of InstrucƟons (N): This is the total count of instrucƟons required by the machine to
execute the program. The number of instrucƟons depends on the program's complexity,
including loops, branches, and the operaƟons involved in the program.

2. Average Number of Steps per InstrucƟon (S): This is the number of fundamental steps (like
fetching, decoding, execuƟng, and wriƟng back) that need to be performed for each machine
instrucƟon. These steps depend on the processor architecture and how efficiently the
processor can handle each instrucƟon.

3. Clock Rate (R): The clock rate determines how fast each cycle occurs, essenƟally controlling
how fast each step can be completed. A higher clock rate means more cycles per second,
thus reducing the Ɵme required for each step.

MODULE 4

1) What are the different modes of data transfer between CPU and io device .Explain interrupt
driven io technique.

ANS :

Modes of Data Transfer Between CPU and I/O Devices

There are several modes for transferring data between the CPU and I/O devices. These modes
define how data is moved between the CPU and memory, and how I/O devices interact with the
system. The main modes are:

1. Programmed I/O (PIO)

2. Interrupt-Driven I/O

3. Direct Memory Access (DMA)

Interrupt-Driven I/O Technique:

In interrupt-driven I/O, the CPU is alerted by the I/O device when it needs to perform a data
transfer, rather than the CPU constantly checking the device's status. This method uses
interrupts, which are signals generated by hardware (I/O devices) or soŌware to noƟfy the
CPU of an event that needs immediate aƩenƟon.

How Interrupt-Driven I/O Works:

1. Device Ready for Data Transfer:

o The I/O device sends an interrupt request (IRQ) signal to the CPU when it is ready
for data transfer (e.g., data is ready to be read from an I/O device or space is
available for data to be wriƩen).

2. Interrupt Handling:

o When the CPU receives the interrupt signal, it temporarily halts its current task
(suspends the execuƟon of the current program).

o The CPU saves its state (e.g., register values, program counter) so that it can return
to the current task aŌer handling the interrupt.

3. Interrupt Service RouƟne (ISR):

o The CPU branches to the Interrupt Service RouƟne (ISR), which is a special program
wriƩen to handle the interrupt. The ISR will take the necessary acƟons, such as
reading data from an I/O device or transferring data to memory.

o AŌer compleƟng the I/O transfer, the ISR signals the CPU that the operaƟon is
complete.

4. Return to Main Program:

o Once the ISR completes the I/O task, the CPU restores its previous state (using the
saved program counter and registers) and returns to the task it was execuƟng
before the interrupt

Example of Interrupt-Driven I/O:

Imagine a scenario where a CPU is reading data from a disk:

1. The CPU sends a read command to the disk.

2. While the disk is processing the read request, the CPU can perform other operaƟons.

2) What are the different techniques to handle mulƟple interrupts (poling, vectors, interrupt
nesƟng explain full).

ANS:

Handling MulƟple Devices with Interrupts

When mulƟple devices generate interrupt requests (IRQ) at the same Ɵme, the system must
decide how to handle them effecƟvely. The processor needs a way to prioriƟze and idenƟfy
which interrupt request should be serviced first. To handle this, there are several methods:

1. Polling

2. Vectored Interrupts

3. Interrupt NesƟng

1. Polling:

In polling, the processor repeatedly checks the interrupt request (IRQ) bits of all devices to see if
any device needs aƩenƟon. When a device has its IRQ bit set, the CPU services it by calling the
appropriate interrupt service rouƟne (ISR).

How Polling Works:

 The CPU checks each device in a sequenƟal manner to see if the IRQ bit is set.

 The first device with an IRQ bit set is serviced by calling its corresponding ISR.

 The process conƟnues unƟl all devices are checked.

Disadvantages of Polling:

 Inefficiency: The CPU wastes Ɵme checking the IRQ bits of all devices, even if most devices
are not requesƟng service.

Example of Polling:

In polling, the CPU might check devices like this:

 Check Device 1: Is IRQ set? Yes → Service Device 1.

 Check Device 2: Is IRQ set? No → Skip to next device.

 Check Device 3: Is IRQ set? Yes → Service Device 3.

2. Vectored Interrupts:

In vectored interrupts, each device that raises an interrupt sends a special code (a vector) to the
processor over the bus. This code helps the CPU directly idenƟfy the device requesƟng service
and allows the CPU to jump to the corresponding ISR without checking each device individually.

How Vectored Interrupts Work:

 Each device is assigned a unique vector code (oŌen 4 to 8 bits), which the device sends to
the CPU.

 The vector code tells the CPU the starƟng address of the appropriate ISR in memory.

 The CPU then jumps to the specific ISR associated with the device.

Advantages of Vectored Interrupts:

 Faster Response: The CPU directly knows which ISR to execute, without having to check all
devices.

 Efficiency: It reduces the Ɵme spent by the CPU checking each device.

Example of Vectored Interrupts:

 Device 1 sends a vector "2A" to the processor. The processor knows that "2A" corresponds to
ISR1 and directly jumps to ISR1.

 Device 2 sends "3A", and the processor jumps to ISR2, and so on.

3. Interrupt NesƟng:

In interrupt nesƟng, interrupts are prioriƟzed. A higher-priority interrupt can interrupt a lower-
priority interrupt being serviced by the CPU. This method ensures that criƟcal interrupts are
handled immediately, even if a less important interrupt is currently being processed.

How Interrupt NesƟng Works:

 Devices are organized in a priority structure, where each device is assigned a priority level.

 Interrupt requests from higher-priority devices are serviced first, even if the CPU is already
servicing a lower-priority interrupt.

 Interrupt requests are passed to a priority arbitraƟon circuit that determines the priority of
each interrupt and allows the processor to service the most urgent request first.

Advantages of Interrupt NesƟng:

 PrioriƟzaƟon: CriƟcal interrupts are handled immediately, ensuring that Ɵme-sensiƟve tasks
are not delayed.

 Efficiency: Devices with higher priority are serviced first, improving system responsiveness.

Example of Interrupt NesƟng:

 Device 1 (high priority) sends an interrupt request while Device 2 (low priority) is being
serviced. Since Device 1 has a higher priority, its interrupt will interrupt the service of Device
2, and the processor will handle Device 1 first.

3) Explain DMA(direct memory access)

ANS :

Direct Memory Access (DMA)

Direct Memory Access (DMA) is a method of data transfer that allows peripheral devices to directly
access the main memory without involving the CPU. DMA enables faster data transfers by bypassing
the CPU, allowing it to perform other tasks while the transfer is happening. This process is managed
by a special control unit known as the DMA controller.

Key Concepts of DMA:

1. DMA Controller: A hardware component that handles the data transfer between memory
and I/O devices without involving the CPU.

2. Data Transfer: The DMA controller directly manages data transfers between peripheral
devices (like hard drives or network cards) and memory. The CPU is not involved in these
transfers, except for iniƟaƟng the process and handling compleƟon.

3. Efficiency: By offloading data transfer tasks to the DMA controller, the CPU can conƟnue
performing other tasks, improving overall system efficiency.

How DMA Works:

1. The CPU iniƟates the DMA transfer by seƫng up the DMA controller with the starƟng
memory address and the number of data bytes to transfer.

2. The DMA controller takes control of the system's bus to perform the data transfer between
the peripheral device and memory.

3. The DMA controller reads or writes data directly between the I/O device and the main
memory without the intervenƟon of the CPU.

4. Once the transfer is complete, the DMA controller signals the CPU via an interrupt, allowing
the CPU to resume its normal operaƟons.

DMA and System Performance:

DMA allows systems to perform data transfers at high speed by reducing the load on the CPU. It is
especially beneficial in data-intensive tasks like disk I/O operaƟons or large data transfers between
devices and memory.

Speed, Size, and Cost of Memory

In computer systems, the trade-offs between speed, size, and cost of memory are significant
consideraƟons:

1. Speed and Size:

o To achieve faster memory access, SRAM (StaƟc RAM) can be used, which is faster but
expensive. Due to its high cost, it's not pracƟcal to use SRAM for large memory
systems.

o On the other hand, DRAM (Dynamic RAM) is slower than SRAM but much cheaper
and can be used for large main memory systems.

2. Impact of DRAM:

o DRAM is slower compared to the CPU, which can result in the need for wait states
during memory read/write cycles. This can slow down the execuƟon of programs.

3. Cache Memory:

o Cache memory is used to address the performance limitaƟons of DRAM. It stores
frequently accessed code and data to speed up access Ɵmes.

o The acƟve porƟon of the program is moved from main memory (DRAM) to cache
memory, where it can be accessed more quickly.

o There are two types of cache:

 Primary Cache: Built into modern processors.

 Secondary Cache: Located between the processor and main memory.

o The DMA controller plays a role in managing the swapping of data between the
main memory and cache memory, ensuring efficient performance.

Memory Hierarchy

