MODULE 3

1) What are addressing modes? Explain each with example.
ANS:
The different addressing modes determine how operands are accessed by the CPU. Each mode

provides flexibility in referencing memory locations and registers, which allows for more efficient
and versatile programming.

Below are the addressing modes explained in detail:
1. Register Mode:

In register mode, the operand is located directly in a processor register. The instruction specifies
the register where the operand resides. This mode is the fastest, as accessing registers is much
quicker than accessing memory.

Example:

ADD R1, R2, R3- Here, R1 and R2 hold the source operands, and R3 is the destination register.
The operation ADD adds the contents of R1 and R2 and stores the result in R3.

2. Absolute/Direct Mode

In absolute/direct mode, the operand is located at a specific memory address, and this address
is explicitly given in the instruction. This mode is useful when the exact memory location of the
operand is known.

Example:
MOV LOC, R1- The instruction moves the value at memory location LOC into register R1.
3. Immediate Mode

In immediate mode, the operand is directly specified in the instruction. The value is a constant or
literal that is directly embedded in the instruction.

Example:

ADD #200, R1, R2- This instruction adds the immediate value 200 to the contents of register R1,
and places the result into register R2.- The # symbol indicates that 200 is an immediate operand.

4. Indirect Mode

In indirect mode, the instruction specifies a register or memory location that contains the
effective address of the operand. This mode allows for more flexible access to data by using
pointers.

Example:

ADD (R1), RO- The effective address of the operand is in register R1. The processor first reads the
value in R1, which gives the memory address of the operand, and then accesses that memory
address.- The operand is added to the contents of register RO.

5. Index Mode:

In index mode, the effective address of the operand is calculated by adding a constant value
(displacement) to the contents of a register. The register used in this mode is called the index
register.

Example:

MOV 10(R1), R2- The instruction adds 10 to the contents of register R1 to calculate the effective
address. It then accesses the operand at that address and moves it into register R2.

6. Relative Addressing Mode:

In relative addressing mode, the effective address is determined by adding the displacement to
the program counter (PC). This mode is commonly used for branch instructions.

Example:

BRANCH >0 LOOP- This instruction tells the processor to branch to the address of LOOP if the
branch condition is satisfied.- The address of LOOP is calculated relative to the program counter
(PC).

7. Auto-Increment Mode:

In auto-increment mode, the effective address of the operand is stored in a register. After
accessing the operand, the register is automatically incremented to point to the next item (e.g.,
in a list or array).

Example:

MOV (R1)+, R2- The operand is accessed from the address in register R1, and then R1 is
incremented by the size of the operand (often the size of a word or byte).- The value at the
address in R1 is moved into register R2.

8. Auto-Decrement Mode:

In auto-decrement mode, the register is first decremented, and then the effective address of the
operand is accessed. This mode is commonly used in stack operations.

Example:

MOV -(R1), R2- The instruction decrements the value in register R1 first, then accesses the
memory address pointed to by the updated value of R1.

- The value at the new address is moved into register R2.

Summary of Addressing Modes

Mode Description Example

Register Mode Operand is in a register. ADD R1, R2, R3

Absolute/Direct Operand is in a memory location, directly specified in the MOV LOC, R1

Mode instruction.

Immediate Mode Operand is directly specified in the instruction. ADD #200, R1,
R2

Indirect Mode Operand is at a memory address stored in a register or ADD (R1), Re

memory location.

Index Mode Effective address is the sum of a constant and the contents of a MOV 10(R1), R2
register.

Relative Mode Effective address is calculated relative to the program counter BRANCH >0 LOOP
(PQ).

Auto-Increment Operand is accessed, and the register is incremented after MOV (R1)+, R2

Mode access.

Auto-Decrement Register is decremented before accessing the operand. MOV -(R1), R2

Mode

2) Explain the basic operation concepts of the computer with a neat diagram.
ANS:
Operating Steps in a Computer System

These steps outline how the processor fetches, decodes, and executes instructions, as well as how
input/output (I/0) operations are handled through interrupts.

Steps for Program Execution:

1. Program in Memory: The program is loaded into memory, usually through the Input Unit.
The processor will start execution based on the instructions provided in the program.

2. Program Counter (PC) Initialization: Execution starts when the Program Counter (PC) is set
to point to the first instruction of the program. The PC is responsible for holding the address
of the instruction that needs to be executed next.

3. Fetching Instruction:

o The contents of the PC (address of the next instruction) are transferred to the
Memory Address Register (MAR).

o A Read Control Signal is sent to the memory to fetch the instruction at the address
held in MAR.

4. Memory Access: After the memory access time has elapsed, the instruction is read from
memory and transferred into the Memory Data Register (MDR).
5. Loading Instruction to Instruction Register (IR): The contents of the MDR are transferred to
the Instruction Register (IR). The instruction is now ready to be decoded and executed.
6. Operation by ALU: If the instruction involves an operation to be performed by the
Arithmetic Logic Unit (ALU), the required operands must be obtained.
7. Fetching Operand from Memory:
o Ifthe operand is stored in memory, its address is sent to MAR, and a read cycle is
initiated to fetch the operand.
8. Loading Operand to ALU: Once the operand is fetched from memory into the MDR, it is
transferred to the ALU for processing.
9. ALU Operation: After performing the required operations, the ALU produces the result.
10. Storing the Result in Memory: If the result from the ALU needs to be stored back in
memory:
o The result is transferred to the MDR.
o The address where the result should be stored is sent to MAR, and a Write Cycle is
initiated to store the result.
11. Update Program Counter: After completing the execution of the current instruction, the PC
is incremented so it points to the next instruction to be executed.
Interrupts:

Interrupt: An interrupt is a signal from an /O device requesting immediate attention from
the processor. When an interrupt is raised, it temporarily halts the current execution and
switches to handle the interrupt.

Interrupt Service Routine (ISR): When an interrupt occurs, the processor executes a
predefined set of instructions called the interrupt service routine to handle the interrupt.
After the interrupt is serviced, the processor returns to the previous program execution.

3) Explain basic performance equations of computer

ANS :

Basic Performance Equation of a Computer

The basic performance equation is used to estimate the processor time required to execute a
program in a computer system. This time is an important factor when measuring the performance of
a processor, as it directly influences the overall speed of the computer when running a program.

Basic Performance Equation:

The processor time 7" is given by the equation:

Where:
* N is the number of machine instructions,
* Sis the number of basic steps per instruction (each step takes one clock cycle),

* Ris the processor's clock rate (in cycles per second, Hz).

Performance Equation Variables:

T: Processor time required to execute a program that has been prepared in a high-level
language.

N: Number of actual machine language instructions needed to complete the execution. This
includes the total number of instructions, including those in loops and any other operations
performed during program execution.

S: Average number of basic steps needed to execute one machine instruction. Each step
completes in one clock cycle. These basic steps could include operations like fetching,
decoding, executing, and storing results.

R: Clock rate of the processor, usually measured in cycles per second (Hertz, Hz). This
indicates the speed at which the processor's clock operates.

Explanation:

1.

Number of Instructions (N): This is the total count of instructions required by the machine to
execute the program. The number of instructions depends on the program's complexity,
including loops, branches, and the operations involved in the program.

Average Number of Steps per Instruction (S): This is the number of fundamental steps (like
fetching, decoding, executing, and writing back) that need to be performed for each machine
instruction. These steps depend on the processor architecture and how efficiently the
processor can handle each instruction.

Clock Rate (R): The clock rate determines how fast each cycle occurs, essentially controlling
how fast each step can be completed. A higher clock rate means more cycles per second,
thus reducing the time required for each step.

MODULE 4

1) What are the different modes of data transfer between CPU and io device .Explain interrupt
driven io technique.

ANS :
Modes of Data Transfer Between CPU and 1/0 Devices

There are several modes for transferring data between the CPU and 1/0O devices. These modes
define how data is moved between the CPU and memory, and how I/O devices interact with the
system. The main modes are:

1. Programmed 1/O (P1O)
2. Interrupt-Driven 1/O

3. Direct Memory Access (DMA)

Interrupt-Driven 1/0 Technique:

In interrupt-driven 1/0, the CPU is alerted by the I/0 device when it needs to perform a data
transfer, rather than the CPU constantly checking the device's status. This method uses
interrupts, which are signals generated by hardware (1/0 devices) or software to notify the
CPU of an event that needs immediate attention.

How Interrupt-Driven I/O Works:
1. Device Ready for Data Transfer:

o The l/O device sends an interrupt request (IRQ) signal to the CPU when it is ready
for data transfer (e.g., data is ready to be read from an 1/0 device or space is
available for data to be written).

2. Interrupt Handling:

o When the CPU receives the interrupt signal, it temporarily halts its current task
(suspends the execution of the current program).

o The CPU saves its state (e.g., register values, program counter) so that it can return
to the current task after handling the interrupt.

3. Interrupt Service Routine (ISR):

o The CPU branches to the Interrupt Service Routine (ISR), which is a special program
written to handle the interrupt. The ISR will take the necessary actions, such as
reading data from an 1/0O device or transferring data to memory.

o After completing the I/O transfer, the ISR signals the CPU that the operation is
complete.

4. Return to Main Program:

o Once the ISR completes the 1/0 task, the CPU restores its previous state (using the
saved program counter and registers) and returns to the task it was executing
before the interrupt

Example of Interrupt-Driven 1/O:
Imagine a scenario where a CPU is reading data from a disk:
1. The CPU sends a read command to the disk.

2. While the disk is processing the read request, the CPU can perform other operations.

Interrupt hardware

User Program

Interrupt Service Routine

&

| Transfer Control Via Intexrrupts

Fig 4.3 Transfer control via Interrupts

2) What are the different techniques to handle multiple interrupts (poling, vectors, interrupt
nesting explain full).

ANS:
Handling Multiple Devices with Interrupts

When multiple devices generate interrupt requests (IRQ) at the same time, the system must
decide how to handle them effectively. The processor needs a way to prioritize and identify
which interrupt request should be serviced first. To handle this, there are several methods:

1. Polling
2. Vectored Interrupts

3. Interrupt Nesting

1. Polling:

In polling, the processor repeatedly checks the interrupt request (IRQ) bits of all devices to see if
any device needs attention. When a device has its IRQ bit set, the CPU services it by calling the
appropriate interrupt service routine (ISR).

How Polling Works:
e The CPU checks each device in a sequential manner to see if the IRQ bit is set.
e The first device with an IRQ bit set is serviced by calling its corresponding ISR.

e The process continues until all devices are checked.

2
m
11 T i1 e
ISR Main o
Vector Program Routine
Table Flow (ISR)
"'\TJQ ‘Lr/

Interrupt

Disadvantages of Polling:

e Inefficiency: The CPU wastes time checking the IRQ bits of all devices, even if most devices
are not requesting service.

Example of Polling:

In polling, the CPU might check devices like this:

e Check Device 1: Is IRQ set? Yes - Service Device 1.

e Check Device 2: Is IRQ set? No - Skip to next device.
e Check Device 3: Is IRQ set? Yes = Service Device 3.
2. Vectored Interrupts:

In vectored interrupts, each device that raises an interrupt sends a special code (a vector) to the
processor over the bus. This code helps the CPU directly identify the device requesting service
and allows the CPU to jump to the corresponding ISR without checking each device individually.

How Vectored Interrupts Work:

e Each device is assigned a unique vector code (often 4 to 8 bits), which the device sends to
the CPU.

e The vector code tells the CPU the starting address of the appropriate ISR in memory.

e The CPU then jumps to the specific ISR associated with the device.

1SR1 582

Processor

Advantages of Vectored Interrupts:

e Faster Response: The CPU directly knows which ISR to execute, without having to check all
devices.

e Efficiency: It reduces the time spent by the CPU checking each device.
Example of Vectored Interrupts:

e Device 1 sends a vector "2A" to the processor. The processor knows that "2A" corresponds to
ISR1 and directly jumps to ISR1.

e Device 2 sends "3A", and the processor jumps to ISR2, and so on.
3. Interrupt Nesting:

In interrupt nesting, interrupts are prioritized. A higher-priority interrupt can interrupt a lower-
priority interrupt being serviced by the CPU. This method ensures that critical interrupts are
handled immediately, even if a less important interrupt is currently being processed.

How Interrupt Nesting Works:
e Devices are organized in a priority structure, where each device is assigned a priority level.

e Interrupt requests from higher-priority devices are serviced first, even if the CPU is already
servicing a lower-priority interrupt.

e Interrupt requests are passed to a priority arbitration circuit that determines the priority of
each interrupt and allows the processor to service the most urgent request first.

‘——] | INTR1 INTRp
Device 1 Device 2 oo Device p

' —l | _]l INTA1 INTA p

Priority arbitration
circuit

Processor

Advantages of Interrupt Nesting:

e Prioritization: Critical interrupts are handled immediately, ensuring that time-sensitive tasks
are not delayed.

Efficiency: Devices with higher priority are serviced first, improving system responsiveness.

Example of Interrupt Nesting:

3)

ANS :

Device 1 (high priority) sends an interrupt request while Device 2 (low priority) is being
serviced. Since Device 1 has a higher priority, its interrupt will interrupt the service of Device
2, and the processor will handle Device 1 first.

Explain DMA(direct memory access)

Direct Memory Access (DMA)

Direct Memory Access (DMA) is a method of data transfer that allows peripheral devices to directly

access the main memory without involving the CPU. DMA enables faster data transfers by bypassing
the CPU, allowing it to perform other tasks while the transfer is happening. This process is managed
by a special control unit known as the DMA controller.

Man

Vo @iy PrOCREEOC Mo v

DMA

Key Concepts of DMA:

1.

DMA Controller: A hardware component that handles the data transfer between memory
and 1/0O devices without involving the CPU.

2. Data Transfer: The DMA controller directly manages data transfers between peripheral
devices (like hard drives or network cards) and memory. The CPU is not involved in these
transfers, except for initiating the process and handling completion.

3. Efficiency: By offloading data transfer tasks to the DMA controller, the CPU can continue
performing other tasks, improving overall system efficiency.

How DMA Works:

1. The CPU initiates the DMA transfer by setting up the DMA controller with the starting
memory address and the number of data bytes to transfer.

2. The DMA controller takes control of the system's bus to perform the data transfer between
the peripheral device and memory.

3. The DMA controller reads or writes data directly between the I/0 device and the main
memory without the intervention of the CPU.

4. Once the transfer is complete, the DMA controller signals the CPU via an interrupt, allowing

the CPU to resume its normal operations.

DMA and System Performance:

DMA allows systems to perform data transfers at high speed by reducing the load on the CPU. It is
especially beneficial in data-intensive tasks like disk /O operations or large data transfers between
devices and memory.

Speed, Size, and Cost of Memory

In computer systems, the trade-offs between speed, size, and cost of memory are significant
considerations:

1. Speed and Size:

o To achieve faster memory access, SRAM (Static RAM) can be used, which is faster but
expensive. Due to its high cost, it's not practical to use SRAM for large memory
systems.

o On the other hand, DRAM (Dynamic RAM) is slower than SRAM but much cheaper
and can be used for large main memory systems.

2. Impact of DRAM:

o DRAM is slower compared to the CPU, which can result in the need for wait states
during memory read/write cycles. This can slow down the execution of programs.

3. Cache Memory:

o Cache memory is used to address the performance limitations of DRAM. It stores
frequently accessed code and data to speed up access times.

o The active portion of the program is moved from main memory (DRAM) to cache
memory, where it can be accessed more quickly.

o There are two types of cache:
» Primary Cache: Built into modern processors.
= Secondary Cache: Located between the processor and main memory.

o The DMA controller plays a role in managing the swapping of data between the
main memory and cache memory, ensuring efficient performance.

Memory Hierarchy

Increasing cPU Increasing Increasing
size speed cost per bt
Primary
cache
Secondary
cache
<
Main '
memory
disk, magnetic
tape secondary
memory

