Digital Design and Computer Organization(BCS302)

MODULE-1

Introduction to Digital Design

Syllabus

Introduction to Digital Design: Binary Logic, Basic Theorems And Properties Of
Boolean Algebra, Boolean Functions, Digital Logic Gates, Introduction, The Map
Method, Four-Variable Map, Don’t-Care Conditions, NAND and NOR Implementation,
Other Hardware Description Language — Verilog Model of a simple circuit. Text book 1:
1.9,24,2.5,2.8,3.1, 3.2, 3.3, 3.5,3.6,3.9

Text book 1: M. Morris Mano & Michael D. Ciletti, Digital Design With an
Introduction to Verilog Design, Se, Pearson Education.

BINARY LOGIC

Definition of Binary Logic

> Binary logic consists of binary variables and a set of logical operations. The
variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc.,
with each variable having two distinct possible values: 1 and O.

There are three basic logical operations: AND, OR, and NOT. Each operation produces
a binary result, denoted by z.

1. AND: This operation is represented by a dot or by the absence of an operator.
Example, x.y = z or xy = z is read “x AND y is equal to z.”

If z=1ifand only if x = 1 and y = 1; otherwise z = 0. The result of the operation x
.y is z.

X, y, and z are binary variables and can be equal either to 1 or O

2. OR: This operation is represented by a plus sign. For example, x + y = z is read “x OR
y is equal to z,” meaning that z=1ifx =1 orify=1orifbothx=1andy=1.If
both x = 0 and y = O, then z = 0.

3. NOT: This operation is represented by a prime (or by an overbar).
For example, x=z (or x = z) is read “not x is equal to z,”.

Ifx =1, then z =0, and if x = 0, then z = 1. The NOT operation is also referred to as
the complement operation, since it changes a 1 to 0 and a O to 1.

Truth table

» A truth table is a table of all possible combinations of the variables, showing the
relation between the values that the variables may take and the result of the
operation.

» The truth tables for the operations AND and OR with variables x and y are
obtained by listing all possible values that the variables may have when
combined in pairs.

Page 1

Digital Design and Computer Organization(BCS302)

Truth Tables of Logical Operations

AND OR NOT

Gates:

“A digital circuit having one or more input signals but only one output signal is called a
gate”.

Logic Gates:
“The gates which perform logical operation is called logic gates”.
. It take binary input and gives binary outputs.

. The output of the logic gates can be understood using truth table, which contains
inputs, outputs of logic circuits.

Logic gates are electronic circuits that operate on one or more input signals to produce

an output signal.
x — = I=x+y {> :
b > X
¥ —

(a) Two-input AND gate b“: Two-input OR gate (c) NOT gate or inverter

Fig: Symbols for digital logic circuits
The timing diagrams LIUSLLALT UWIC LUCdllZCU LTS PULLST of each gate to the four input
signal combinations. The horizontal axis of the timing diagram represents the time,
and the vertical axis shows the signal as it changes between the two possible voltage
levels.

The low level represents logic O, the high level logic 1.
The AND gate responds with a logic 1 output signal when both input signals are logic 1.
The OR gate responds with a logic 1 output signal if any input signal is logic 1.

The NOT gate is commonly referred to as an inverter. The output signal inverts the
logic sense of the input signal.

Page 2

Digital Design and Computer Organization(BCS302)

v 0 0 1 1 0 A
A F=4BC 7} G=A+B+(C+D
AND: x - y 0 o [1] o 0 B C
) C \
, D
OR:x + v 0 | 1 1 1 [0
NOT: x’ 1] o o [1 1 (2) Three-input AND gate ~ (b) Four-input OR gate

Gates with multiple inputs
Input-Output Signals for gates Timing Diagram

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA:
Duality:

» The important property of Boolean algebra is called the duality principle
and states that every algebraic expression deducible from the postulates of
Boolean algebra remains valid if the operators and identity elements are
interchanged.

> In a two-valued Boolean algebra, the identity elements and the elements of
the set B are the same: 1 and 0. The duality principle has many applications.

»> If the dual of an algebraic expression is desired, we simply interchange OR
and AND operators and replace 1’s by 0’s and O’s by 1’s.

Basic Theorems

» Table 1 lists out six theorems of Boolean algebra and four of its postulates. The
theorems and postulates listed are the most basic relationships in Boolean
algebra.

» The theorems, like the postulates, are listed in pairs; each relation is the dual of
the one paired with it. The postulates are basic axioms of the algebraic structure
and need no proof.

» The theorems must be proven from the postulates.

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2 (a) x+0=x (b) x-1=x
Postulate 5 (a) x+x'=1 (b) x-x' =
Theorem 1 (a) X +x=x (b) XX =x
Theorem 2 (a) x+1=1 (b) x-0=0
Theorem 3, involution (x")' =x

Postulate 3, commutative (a) xX+ty=y+ux (b) Xy = yx
Theorem 4, associative @ x+(+z2)=kx+y) +z (b) x(vz) = (xy)z
Postulate 4, distributive (a) x(y +z) =xy +xz (b) x+yz=(x+yx +2)
Theorem 5, DeMorgan (a) x +y) =x'"y' (b) (xy) =x"+y'
Theorem 6, absorption (a) X +xy=x (b) x(x +y)=x

Page 3

Digital Design and Computer Organization(BCS302)

THEOREM 1(a): x + x = Xx.

Statement Justification
X+x=x+x).1 postulate 2(b)
= (x+x)(x+x) 5(a)
=X + XX' 4(b)
=x+0 S(b)
=X 2(a)

THEOREM 1(b): x.x =x.

Statement Justification

Xx.x=xx+0 postulate 2(a)
= XX + XX' S(b)
- x(x + x) 4(a)
=x.1 5(a)
=X 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof in
part (b) is the dual of its counterpart in part (a)..

THEOREM 2(a): x + 1 = 1.
Statement Justification

x+1=1.(x+1) postulate 2(b)

= (x+x)x+1) 5(a)
=x+x'.1 4(b)
=x+x 2(b)
=1 S(a)

THEOREM 2(b): x .0 = 0 by duality.

THEOREM 3: (x')' = x. From postulate 5, we have x + X' = 1 and x . X' = 0, which
together define the complement of x. The complement of x' is x and is also (x')'.

Therefore, since the complement is unique, we have (x')' = x. The theorems involving two
or three variables may be proven algebraically from the postulates and the theorems
that have already been proven.

THEOREM 6(a): x + xy = X.

Statement Justification

X+xy=x.1+xy postulate 2(b)
=x(1+y) 4(a)

Page 4

Digital Design and Computer Organization(BCS302)

=x(y + 1) 3(a)
=x.1 2(a)
=X 2(b)

THEOREM 6(b): x(x + y) = x by duality.

» The theorems of Boolean algebra can be proven by means of truth tables.

» In truth tables, both sides of the relation are checked to see whether they yield
identical results for all possible combinations of the variables involved.

» The following truth table verifies the first absorption theorem:

X |y Xy | x+xy
010 (0
01 0 0

The truth table for the first DeMorgan’s theorem, (x + y)' = x'y', is as follows:

[} " r "

X y|x+ty (x+y) X' |y | xy
0 0| 0 1 1| 1 1
0 1 1 0 10| 0
1 0 1 0 0| 1 0
11 1 0 00| o

The operator precedence for evaluating Boolean expressions is
(1) parentheses, (2) NOT, (3) AND, and (4) OR
BOOLEAN FUNCTIONS

» Boolean algebra is an algebra that deals with binary variables and logic
operations.

> A Boolean function described by an algebraic expression consists of binary
variables, the constants 0 and 1, and the logic operation symbols.

» For a given value of the binary variables, the function can be equal to either 1 or
0.

Consider the Boolean function F1 = x + y'z The function F1 is equal to 1 if x is equal
to 1 or if both y' and z are equal to 1. F1 is equal to O otherwise. Therefore, F1 = 1 if x
=lorify=0and z=1.

Page 5

Digital Design and Computer Organization(BCS302)

> A Boolean function expresses the logical relationship between binary
variables and is evaluated by determining the binary value of the expression
for all possible values of the variables.

> A Boolean function can be represented in a truth table. The number of
rows in the truth table is 2n, where n is the number of variables in the
function.

» Table 1 shown below represents the truth table for the function F1. There are
eight possible binary combinations for assigning bits to the three variables x,
y, and z.

» The table shows that the function is equal to 1 when x = 1 or when yz = 01
and is equal to O otherwise.

_Truth Tables for F; and F;,

X y z Fy F
0 0 0 0 0
0 0 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0
Table 1

> A Boolean function can be transformed from an algebraic expression into a
circuit diagram composed of logic gates connected in a particular structure.

o The logic-circuit diagram for F1 is shown in Fig. 2.1. There is an inverter for

input y to generate its complement. There is an AND gate for the term y'z

and an OR gate that combines X with y'z.

x 7DF1
> D—

FIGURE 2.1
Gate implementationof F; = x + y'z

Consider, for example, the following Boolean function:F2 = x'y'z + x'yz + xy'

» A schematic of an implementation of this function with logic gates is shown
in Fig. 2.2(a).

» Input variables x and y are complemented with inverters to obtain x' and y'. The
three terms in the expression are implemented with three AND gates. The OR

Page 6

Digital Design and Computer Organization(BCS302)

gate forms the logical OR of the three terms. The truth table for F2 is listed in
Table 2.2.

Now consider the possible simplification of the function by applying some of the
identities of Boolean algebra:

F2 =xyz +x'yz + xy' =x'z(y' +y) + Xy' = X'z + xy'

» The function is reduced to only two terms and can be implemented with gates
as shown in Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the
one in (a), yet both implement the same function.

» By means of a truth table, it is possible to verify that the two expressions are
equivalent. The simplified expression is equal to 1 when xz = 01 or when xy = 10.

» In general, there are many equivalent representations of a logic function. Finding
the most economic representation of the logic is an important design task.

D —
o

b=t

bia]

[>o
[>o

i

(b) F, =xv'+ x'z

FIGURE 2.2
Implementation of Boolean function F; with gates

Page 7

Digital Design and Computer Organization(BCS302)

Complement of a Function

(A+B+C) =(A+x)' letB + C = x

|

A'x’ by theorem 5(a) (DeMorgan)
A(B + €)' substitute B + € = x
A'(B'C’) by theorem 5(a) (DeMorgan)

= A'B'C’ by theorem 4(b) (associative)
(A+B+C+D+ --- +F) =A'B'C'D'... F
(ABCD ...)’=A'"+B'"+C'"+D" + --- + F'

Find the complement of the functions F; = x'yz’ + x'y'zand F; = x(y'z" + yz). By
applying DeMorgan’s theorems as many times as necessary, the complements are
obtained as follows:

——

Fl —— x’yz’ + x’y’Z F2, — [x(ylzr . yz)]l
Fl an (x yz + X ¥ Z) — xl s (ylzl & yz)l = xr a (y’zl)’(yZ)’
— (x’yz’)'(xly’Z)’ o x, a (y 4. Z)(yl + ZI)
0
- ’ + ’ + ’
!__ X yz ¥y Z

=Ry 2 e 1z) Jd

Find the complement of the functions /| and F, of Example 2.2 by taking their duals
and complementing each literal.

L Bp=xyz" +x'y'z.

The dualof Fyis (x' +y + z')(x’ + y' + 2).

Complement each literal: (x + y’ + z)(x + y + z’) = F{.
2. K =x(yv'z" + y2).

The dual of Fyis x + (y' + z')(y + 2).
Complement each literal: x" + (y + z)(y' +) = F.

Page 8

Digital Design and Computer Organization(BCS302)

DIGITAL LOGIC GATES

>

>

Since Boolean functions are expressed in terms of AND, OR, and NOT operations,
it is easier to implement a Boolean function with these type of gates.

Factors to be weighed in considering the construction of other types of logic
gates are (1) the feasibility and economy of producing the gate with physical
components, (2) the possibility of extending the gate to more than two inputs, (3)
the basic properties of the binary operator, such as commutativity and
associativity, and (4) the ability of the gate to implement Boolean functions alone
or in conjunction with other gates.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2.5.
Each gate has one or two binary input variables, designated by x and y, and one
binary output variable, designated by F.

The inverter circuit inverts the logic sense of a binary variable, producing the
NOT, or complement, function. The small circle in the output of the graphic
symbol of an inverter (referred to as a bubble) designates the logic complement.
The NAND function is the complement of the AND function, as indicated by a
graphic symbol that consists of an AND graphic symbol followed by a small circle.
The NOR function is the complement of the OR function and uses an OR graphic
symbol followed by a small circle.

NAND and NOR gates are used extensively as standard logic gates and are in fact
far more popular than the AND and OR gates. This is because NAND and NOR
gates are easily constructed with transistor circuits and because digital circuits
can be easily implemented with them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate,
except for the additional curved line on the input side. The equivalence, or
exclusive-NOR, gate is the complement of the exclusive-OR, as indicated by the
small circle on the output side of the graphic symbol.

Page 9

Digital Design and Computer Organization(BCS302)

Graphic Alpebraic Truth

Mamsa symbol function tahli
r y| F
X — h! n ()] n

AND y— JF F-xy ool

x y| F
r— o 0 T
OR | >—r Fe=x4y]
¥) k o 1)1
e 1 0] 1
1 1] 1
x| F
Inverier .'c—}-o—.l‘ F=x' -__l
1] 0
x| F
Buffe (=
uffer X [:';:- I Fmx ol o
11
x y| F
I o _|
NAND ' :l_}’—* F=) o1l
1 0f 1
1 1 0
x y| F
_ T L. . = 0 | 1
NOR - :[>—}- Fe= (1 + ¥ 01 0
1 0] 0
1 1| 0
x y| F
Exclusive-OR 1 —4 F= xy' & 2y UL
(XOR) y —H o —xamy - -
] 1 0] 1
1 1| 0
x y| F
Exchsive-NOR 10— Fexy + 'y’ 0o 1
or , J | £ --'.T-- \": 1] .| 0
equivalence ! L T 1 a| o
1 1] 1
FIGURE 2.5

Digltal loglc gates

THE MAP METHOD

> The map method provides a simple, straightforward procedure for
minimizing Boolean functions. This method may be regarded as a pictorial
form of a truth table. The map method is also known as the Karnaugh map or
K-map.

» A K-map is a diagram made up of squares, with each square representing one
minterm of the function that is to be minimized.

» Since any Boolean function can be expressed as a sum of minterms, it follows
that a Boolean function is recognized graphically in the map from the area
enclosed by those squares whose minterms are included in the function.

» Map represents a visual diagram of all possible ways a function may be
expressed in standard form. By recognizing various patterns, the user can derive
alternative algebraic expressions for the same function, from which the simplest
can be selected.

Page
10

Digital Design and Computer Organization(BCS302)

>

>

The simplified expressions produced by the map are always in one of the
two standard forms: sum of products or product of sums.

The simplest algebraic expression is an algebraic expression with a minimum
number of terms and with the smallest possible number of literals(variable) in
each term. This expression produces a circuit diagram with a minimum number
of gates and the minimum number of inputs to each gate.

FOUR-VARIABLE K-MAP

>

>

The map for Boolean functions of four binary variables (w, X, y, z) is shown in Fig.
3.8. In Fig. 3.8(a) are listed the 16 minterms and the squares assigned to each.

In Fig. 3.8(b), the map is redrawn to show the relationship between the squares
and the four variables. The rows and columns are numbered in a Gray code
sequence, with only one digit changing value between two adjacent rows or
columns.

The minterm corresponding to each square can be obtained from the
concatenation of the row number with the column number. For example, the
numbers of the third row (11) and the second column (01), when concatenated,
give the binary number 1101, the binary equivalent of decimal 13. Thus, the
square in the third row and second column represents minterm m13.

One square represents one minterm, giving a term with four literals. Two
adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals. Eight adjacent squares
represent a term with one literal.

11

Page

Digital Design and Computer Organization(BCS302)

» Sixteen adjacent squares produce a function that is always equal to No other

combination of squares can simplify the function.
¥
I
A (W) 11 [
m .UII M. ﬂ::
My 1y 14 My 00 [w'x v 2" | w'x"v'z | w'x'yz [wx'y:
my L M= LM
FFL4 frlg FHl5 My, 01 [w'xy'z" | wixy'z | wixwz | wixps'
My myy Mys w2 P
My iy L] LT Mg 11| wxy ':' u.',1,'_1": WIVI .|._1_'_'.':'
M m m, My, m,
Mg Mg iy My 10 [wx'y'z" | wx'y'z | wx'vz | wx'vwz’
(&) [}
FIGURE 3.8

Four-variable map

1)Simplify the Boolean function

F(w,x,y,2)= ¥m (O, 1, 2, 4, 5, 6, 8,9, 12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms
listed in the sum are marked by 1’s in the map of Fig. 3.9.

Eight adjacent squares marked with 1’s can be combined to form the one literal
term y'. The remaining three 1’s on the right cannot be combined to give a simplified
term; they must be combined as two or four adjacent squares.

The larger the number of squares combined, the smaller is the number of literals
in the term. In this example, the top two 1’s on the right are combined with the top
two 1’s on the left to give the term w'z'.

These squares make up the two middle rows and the two end columns, giving the term
xz'. The simplified function is

Page
12

Digital Design and Computer Organization(BCS302)

Y '\': ——t
"}\ 00 o 1 10
%~\>\ Jmg__Im m T —
001 1 |
| | il
Iy] ms m % .“ t
o1 | |y 1 i
— o
{H my My my,
w 1 1 S E——
. =
g mg my, my,
10 1]J)
FIGURE 3.9

¥ rwi

2) Simplify the Boolean function

F=AB'C + BCD' + ABCD' + AB'C'

+ Xz

.+ F=A'B’C’(D+D’)+B’CD’(A+A)+A’BCD’+AB’C’(D+D))

+ F=A’'B'C’D+A’'B’C’'D+AB’CD’+A’B’CD’ +A’BCD’+AB’C’'D+AB’C’D’

c
11 10
iy my ,
||
—
TH my m, iy,
0 1= A'CDr
(Al my o m,, B
11
41 “ iy My = ?
11 1 1 1]
',_. T
L S| B W 7%
o= D T~ mc

Note: AR'C'D' + AR CD' = A'R'IY
ABRCD + AB'CD" = ARV
A'RD + AR'D' = R'DY
A'B'C + AR'C = B'C

FIGURE 3.10

1 quad

B’'D’

Map for Example 3.6, A'B'C' + B'CD' + A'BCD’ + AB'C' = B'D' + B'C' + A'CD’

The simplified function is

Map for Example 3.5, F(w, x, ¥, z) = 2(0,1,2,4,5,6,8,9,12,13,14) =

13

Page

Digital Design and Computer Organization(BCS302)

F=BD'+ B'C'+ A'CD'

3) Solve S= F(A,B,C)=£ m(0, 1, 3, 5, 6, 7, 11, 12, 14) using Kmap and implement using
basic gates.

OR

S=ABC +BCD +BCD + ABL 4+ OR S =ABC + BCD + ABC + ARD +
S=ABC + BCD + ABC +ABD +

A B € O
T !
| BCD
’—
+ —\ ABC
1 .
. jAa_J
| i’ | | s
+ AD
-—

4) Solve S=X Mmo,1, 2, 4, 5,6, 8,9,10,12,13) using Kmap

Page
14

Digital Design and Computer Organization(BCS302)

\ Cb CTp CpP CD
=51 11) 1

c : |
Al 1 1 1
e R T i B
AB ."»1 ‘ 2 B r 1

S=AD+BD+C
5) Solve S= F(A,B,C,D)=£m(7,9,10,11,12,13,14,15) using K map to get minimum
SOP expression.

b Cp ¢p CD

0 1 § 2

S=BCD+AD+AC + AB

Solve S=F(A,B,C,D)=2m(1,2,3,6,8,9,10,12,13,14) using K map

to get minimum SOP expression.

THD ©Tp <P CD
x5 | K:1 s G
AB I i 1

22 1= 15 “
as 1 | 1 1
\§ o 1 o 1 hl 001
S=ABD + CD + AC

Page
15

Digital Design and Computer Organization(BCS302)

Prime Implicants
In choosing adjacent squares in a map, we must ensure that

(1) all the minterms of the function are covered when we combine the squares.
(2) the number of terms in the expression is minimized, and

(3) there are no redundant terms (i.e., Minterms already covered by other terms).

* A prime implicant is a product term obtained by combining the maximum
possible number of adjacent squares in the map.

* The prime implicants of a function can be obtained from the map by combining
all possible maximum numbers of squares.

* prime implicants are the building blocks used in the simplification of Boolean
functions

Essential Prime Implicant:

* An essential prime implicant is a prime implicant that covers at least one
minterm that no other prime implicant covers.

essential prime implicants are a subset of prime implicants that are necessary to
cover specific minterms in order to achieve a minimal representation of the Boolean
function.

1) Simplify following four-variable Boolean function:
F(A, B, C,D)=2m (0,2,3,5,7,8,9, 10, 11, 13, 15)

The simplified expression is obtained from the logical sum of the two essential prime
implicants and any two prime implicants that cover minterms m3, m9, and m11..

& IDoo 0717 7 g N
%: 5 - Essential Prime Implicants are BD and B'D’
= 1
L —+ Prime Implicants are B'D’,CD,BD,AD
= 1
12 13
= 1
= 1 1

Rl | SSEY B

BD + CD + BD +

There are four possible ways that the function can be expressed with four product
terms of two literals each:

F=BD+ BD'+CD + AD
=BD + B'D' + CD + AB'
=BD + BD'+ BC + AD

Page
16

Digital Design and Computer Organization(BCS302)

=BD + B'D' + B'C + AB'

DON’T-CARE CONDITIONS

>

The logical sum of the minterms associated with a Boolean function specifies the
conditions under which the function is equal to 1. The function is equal to O for
the rest of the minterms. This pair of conditions assumes that all the
combinations of the values for the variables of the function are valid.

In some applications the function is not specified for certain combinations of the
variables.

Functions that have unspecified outputs for some input combinations are called
incompletely specified functions.

In most applications, we simply don’t care what value is assumed by the
function for the unspecified minterms. For this reason, it is customary to call the
unspecified minterms of a function don’t-care conditions. These don’t-care
conditions can be used on a map to provide further simplification of the Boolean
expression.

A don’t-care minterm is a combination of variables whose logical value is not
specified. Such a minterm cannot be marked with a 1 in the map, because it
would require that the function always be a 1 for such a combination. Likewise,
putting a 0 on the square requires the function to be 0. To distinguish the don’t-
care condition from 1’s and O’s, an X is used.

Thus, an X inside a square in the map indicates that we don’t care whether the
value of O or 1 is assigned to F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care
min- terms may be assumed to be either O or 1. When simplifying the function,
we can choose to include each don’t-care minterm with either the 1’s or the O’s,
depending on which combination gives the simplest expression.

Simplify the Boolean function

F(w,x,y,2)= (1,3,7,11, 15)which has the don’t-care conditions
d(w, x,y,2)= (0,2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of d are the don’t-care minterms that may be assigned either O or 1. The map
simplification is shown in Fig. 3.15. The minterms of F are marked by 1’s, those of d are
marked by X’s, and the remaining squares are filled with O’s. To get the simplified
expres- sion in sum-of-products form, we must include all five 1’s in the map, but we
may or may not include any of the X’s, depending on the way the function is simplified.
The term yz covers the four minterms in the third column.The remaining minterm, m1,
can be combined

17

Page

Digital Design and Computer Organization(BCS302)

¥ ¥
L —_—— ¥ —_—
wx 00 1) 11 10 e o 0l 11 10
iy 1y iy iy iy, my 8 A,
m| X 1 1 X ol X 1 1 X
wxt —" W' T
1y s My g] = iy M 1 g,
o1 (X 1] m 0 X | 0
Iz L b Mgy My x Mz Mg Iy Mg X
11 [] 1] 11 0 [1 0
W1 m , m m OR " iy m my, m,
10] Il 1 0] O] 1 0
™ ~
¥z h yz
(a) F=yz+wix' (b) F=yz +w'z
FIGURE 3.15

Example with don't-care conditions

with minterm m3 to give the three-literal term w'x'z. However, by including one or two
adjacent X’s we can combine four adjacent squares to give a two-literal term. In Fig.
3.15(a), don’t-care minterms O and 2 are included with the 1’s, resulting in the simpli-
fied function

F =yz + w'x'

In Fig. 3.15(b), don’t-care minterm S is included with the 1’s, and the simplified
function is now

F=yz+wz

Either one of the preceding two expressions satisfies the conditions stated for this
example.

Solve S=F(A,B,C,D)=2m(7)+d(10,11,12,13,14,15) using K map to get minimum
SOP expression

< D < D < D < D
o - > -3
AB
= 3 F B
AB ;|
* 3 ™*rs e S -
an|l X xX | x 3
—_— = u =t = 10
A® >~ x
S =BCD

Solve S =F(A,B,C,D)=£m(2,3,5,7,10,12)+d(11,15) using K map to get minimum SOP
expression

Page
18

Digital Design and Computer Organization(BCS302)

D D CD D
=

o L) -

5]
a (1 7 1ju
13 ‘l’x

X 11 Is=ABCD+ ABD + BC

Solve S=F(A,B,C,D)=£m|(6,7,9,10,13)+d(1,4,5,11) using K map to get minimum SOP
expression.

b Cp CD CbD

#|
=

Y T

X X 1 1

12 3 15 15

:
m XX 1)

S=ABC+CD + AB
NAND AND NOR IMPLEMENTATION

>

>

Digital circuits are frequently constructed with NAND or NOR gates rather than
with AND and OR gates.

NAND and NOR gates are easier to fabricate with electronic components and are
the basic gates used in all IC digital logic families.

NAND Circuits

>

The NAND gate is said to be a universal gate because any logic circuit can be
implemented with it. To show that any Boolean function can be implemented with
NAND gates, we need only show that the logical operations of AND, OR, and
complement can be obtained with NAND gates alone. This is indeed shown in Fig.
3.16.

The complement operation is obtained from a one-input NAND gate that behaves
exactly like an inverter. The AND operation requires two NAND gates. The first
produces the NAND operation and the second inverts the logical sense of the
signal. The OR operation is achieved through a NAND gate with additional
inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain
the simplified Boolean function in terms of Boolean operators and then convert
the function to NAND logic.

The conversion of an algebraic expression from AND, OR, and complement to
NAND can be done by simple circuit manipulation techniques that change AND-
OR diagrams to NAND diagrams.

Two equivalent graphic symbols for the NAND gate are shown in Fig. 3.17. The
AND-invert symbol has been defined previously and consists

19

Page

Digital Design and Computer Organization(BCS302)

Inverter x

X

>
AND | Du D< Xy

OR I

FIGURE 3.16
Logic operations with NAND gates
X x
¥ — o— (xyz)’ ¥ x+y + " = (xyz)
(a) AND-invert (b) Invert-OR.
FIGURE 3.17
Two graphic symbols for a three-input NAND gate

of an AND graphic symbol followed by a small circle negation indicator referred to as a
bubble.

» It is possible to represent a NAND gate by an OR graphic symbol that is preceded

by a bubble in each input. The invert-OR symbol for the NAND gate follows
DeMorgan’s theorem and the convention that the negation indicator (bubble)
denotes complementation. The two graphic symbols’ representations are useful in
the analysis and design of NAND circuits. When both symbols are mixed in the
same diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

» The implementation of Boolean functions with NAND gates requires that the

functions be in sum-of-products form. To see the relationship between a sum-
of-products expression and its equivalent NAND implementation, consider the
logic diagrams drawn in Fig. 3.18. All three diagrams are equivalent and
implement the function

F=AB+CD

» The function is implemented in Fig. 3.18(a) with AND and OR gates. In Fig.

3.18(b), the AND gates are replaced by NAND gates and the OR gate is
replaced by a NAND gate with an OR-invert graphic symbol. Remember that a
bubble denotes complementation and two bubbles along the same line represent
double complementation, so both can be removed.

20

Page

Digital Design and Computer Organization(BCS302)

» Removing the bubbles on the gates of (b) produces the circuit of (a). Therefore,
the two diagrams implement the same function and are equivalent.

A
5F—
O —
I —
- T
o i
C— G
0 — I

O
=4

g
(b)

FIGURE 3.18
Three ways toimplement F = AB = CD

» In Fig. 3.18(c), the output NAND gate is redrawn with the AND-invert graphic
symbol. In drawing NAND logic diagrams, the circuit shown in either Fig. 3.18(b)
or (c) is acceptable.

» The one in Fig. 3.18(b) is in mixed notation and represents a more direct
relationship to the Boolean expression it implements. The NAND implementation
in Fig. 3.18(c) can be verified algebraically.

» The function it implements can easily be converted to sum-of- products form by
DeMorgan’s theorem:

F = ((AB)'(CD))' = AB + CD

Implement the following Boolean function with NAND gates:
F(x,y,2)=(1,2,3,4,5,7)

» The first step is to simplify the function into sum-of-products form. This is done
by means of the map of Fig. 3.19(a), from which the simplified function is
obtained:

F=xy +x'y+2z

» The two-level NAND implementation is shown in Fig. 3.19(b) in mixed notation.
Note that input z must have a one-input NAND gate (an inverter) to compensate
for the bubble in the second-level gate. An alternative way of drawing the logic
diagram is given in Fig. 3.19(c).

» Here, all the NAND gates are drawn with the same graphic symbol. The inverter
with input z has been removed, but the input variable is complemented and
denoted by z'

Page
21

Digital Design and Computer Organization(BCS302)

m iy iz my

J ml s i I
x4l 1 1 1 =xy' +x'y +z

(b} (c)

FIGURE 3.19
Solution to Example 3.9

» The procedure described in the previous example indicates that a Boolean
function can be implemented with two levels of NAND gates. The procedure for
obtaining the logic diagram from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least
two literals. The inputs to each NAND gate are the literals of the term. This procedure
produces a group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in
the second level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level. However, if the
single literal is complemented, it can be connected directly to an input of the second-
level NAND gate.

Multilevel NAND Circuits

» The standard form of expressing Boolean functions results in a two-level
implementation. There are occasions, however, when the design of digital systems
results in gating structures with three or more levels.

» The most common procedure in the design of multilevel circuits is to express the
Boolean function in terms of AND, OR, and complement operations. The function
can then be implemented with AND and OR gates. After that, if necessary, it can
be converted into an all-NAND circuit.

Page
22

Digital Design and Computer Organization(BCS302)

Consider, for example, the Boolean function F = A (CD + B) + BC'

C' _]
D —D_l—D—I_
B
"'-'[.l
B——1)
c—-

(2) AND-0OE. gates
C" —_—
o P
A _
c—1 ¥

(b) NAND gates
FIGURE 3.20

Implementing F = A(CD + B) + BC'

» The AND-OR implementation is shown in Fig. 3.20(a). There are four
levels of gating in the circuit. The first level has two AND gates. The
second level has an OR gate followed by an AND gate in the third level
and an OR gate in the fourth level.

» A logic diagram with a pattern of alternating levels of AND and OR gates
can easily be converted into a NAND circuit with the use of mixed
notation, shown in Fig. 3.20(b).

» The procedure is to change every AND gate to an AND-invert graphic
symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there
are two bubbles along the same line.

» The bubble associated with input B causes an extra comple- mentation,
which must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND-OR diagram into an all-NAND
diagram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2. Convert all OR gates to NAND gates with invert-OR graphic symbols.
3. Check all the bubbles in the diagram. For every bubble that is not

compensated by another small circle along the same line, insert an inverter (a one-
input NAND gate) or complement the input literal.

As another example, consider the multilevel Boolean function

Page
23

Digital Design and Computer Organization(BCS302)

F = (AB' + A'B)(C + D)

>

>

>

by b by R

w\o

(ay AND-OE gates

by B by R

;

(b) NAND gates

FIGURE 3.21
Implementing F = [AB' + A'B) (C + [)

The AND-OR implementation of this function is shown in Fig. 3.21(a) with three
levels of gating. The conversion to NAND with mixed notation is presented in Fig.
3.21(b) of the diagram.

The two additional bubbles associated with inputs C and D' cause these two
literals to be complemented to C' and D.

The bubble in the output NAND gate complements the output value, so we need
to insert an inverter gate at the output in order to complement the signal again
and get the original value back.

NOR Implementation

>

>

The NOR operation is the dual of the NAND operation. Therefore, all
procedures and rules for NOR logic are the duals of the corresponding procedures
and rules developed for NAND logic.

The NOR gate is another universal gate that can be used to implement any
Boolean function. The implementation of the complement, OR, and AND
operations with NOR gates is shown in Fig. 3.22.

The complement operation is obtained from a one- input NOR gate that behaves
exactly like an inverter.The OR operation requires two NOR gates, and the AND
operation is obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.23. The OR-
invert symbol defines the NOR operation as an OR followed by a complement. The
invert-AND symbol complements each input and then performs an AND

24

Page

Digital Design and Computer Organization(BCS302)

operation. The two symbols designate the same NOR operation and are logically
identical because of DeMorgan’s theorem.

Inverter x

orR '

AND

VV@V

Dc. x+y
FIGURE 3.22

Logic operations with NOR gates

x _ X ror_r F r
¥ (x +y+2z) y—a xXyz =lx+y+z)
Z i—0Q

(a) OR-invert (b) Invert-AND

FIGURE 3.23
Two graphic symbols for the NOR gate

» A two-level implementation with NOR gates requires that the function be
simplified into product-of-sums form.

» Remember that the simplified product-of-sums expression is obtained from the
map by combining the O’s and complementing. A product-of-sums expression is
implemented with a first level of OR gates that produce the sum terms followed
by a second-level AND gate to produce the product.

» The transformation from the OR-AND diagram to a NOR diagram is achieved by
changing the OR gates to NOR gates with OR-invert graphic symbols and the
AND gate to a NOR gate with an invert-AND graphic symbol.

» A single literal term going into the second-level gate must be complemented.

Figure 3.24 shows the NOR implementation of a function expressed as a product of
sums: F = (A + B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the
same line. Variable E is complemented to compensate for the third bubble at the input
of the second-level gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram is
similar to the one presented for NAND gates. For the NOR case, we must convert
each OR gate to an OR-invert symbol and each AND gate to an invert-AND symbol.
Any bubble that is not compensated by another bubble along the same line needs an
inverter, or the complementation of the input literal.

NOR implementation for the following function F = (A + B)(C + D)E in Fig3.24

NOR implementation for the following Boolean function is

Page
25

Digital Design and Computer Organization(BCS302)

F = (AB' + A'B)(C + D) in Fig:3.25

"{

B]:’

o) g
Fa

D

El

FIGURE 3.24

mplementing F = (4 + B)(C + D)E

A'—
B —

T

A —a

B —

y—] >

FIGURE 3.25
mplementing F = (AB' + A'B)(C + D) with MOR gates

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing
all the bubbles. To compensate for the bubbles in four inputs, it is necessary to
complement the corresponding input literals.

Hardware Description Language

* A hardware description language (HDL) is a computer-based language that
describes the hardware of digital systems in a textual form.

+ It resembles an ordinary computer programming language, such as C, but is
specifically oriented to describing hardware structures and the behavior of
logic circuits.

* It can be used to represent logic diagrams, truth tables, Boolean expressions,
and complex abstractions of the behavior of a digital system.

* One way to view an HDL is to observe that it describes a relationship between
signals that are the inputs to a circuit and the signals that are the outputs of the
circuit.

* For example, an HDL description of an AND gate describes how the logic value of
the gate’s output is determined by the logic values of its inputs.

Page
26

Digital Design and Computer Organization(BCS302)

HDL is used to represent and document digital systems in a form that can be
read by both humans and computers and is suitable as an exchange language
between designers.

Companies that design integrated circuits use proprietary and public HDLs. In
the public domain, there are two standard HDLs that are supported by the IEEE:
VHDL and Verilog.

Verilog is an easier language than VHDL to describe, learn, and use, we have
chosen it for this book.

A Verilog model is composed of text using keywords, of which there are about
100.

Keywords are predefined lowercase identifiers that define the language
constructs. Examples of keywords are module, endmodule, input, output,
wire, and, or, and not.

Any text between two forward slashes (//) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model

Multiline comments begin with / * and terminate with * /.

Verilog is case sensitive, which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT).

A module is the fundamental descriptive unit in the Verilog language. It is
declared by the keyword module and must always be terminated by the keyword
endmodule.

There 3 types of modelling:

Dataflow modeling describes a system in terms of how data flows through the
system.

Behavioral modeling describes a system’s behavior or function in an algorithmic
fashion.

Structural modeling describes a system in terms of its structure and
interconnections between components.

27

Page

Digital Design and Computer Organization(BCS302)

Write a Verilog program for OR gate using i)dataflow modelling ii)Behavioral
modelling and iii)structural modelling.

1 Emodule dataflow(a, b, y): Jre e AR By e (1
input a, b;
. input a, b; output y;
reg y:
3 output y, always @ (a or b)
o - . | begin
¢ assigny=a|b if ((a==10) & (b ==10)) ¥y
5 endnodule g
Y ’
6 end
endmodule

1 Bnodule structural(a, b, v);
2 inmput a, b;

3 output y;

4 orql(yab);

5 endmodule

0

Page
28

Digital Design and Computer Organization(BCS302)

module Simple Circuit (A, B, C, D, E);

output D, E;

input A, B, C;

wire wl;

and G1 (wl, A, B); // Optional gate instance name
not G2 (E, C):

or G3 (D, wl, E);

endmodule

HDL describes a circuit that is specified with the following two Boolean
expressions:

E=A+BC+ B'D
F =B'C + BC'D’

imodule beh(E, F, A, B, C, D);

output E, F;

input A, B, C, D;

A ||l (B & C) || ((!B) && D):

((!B) && C) |] (B && (!C) && (!'D)):

assign E

assign F
endmodule

Page
29

Digital Design and Computer Organization(BCS302)

Module-2

Combinational Logic

Syllabus:

Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor,
Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits — Adder, Multiplexer,
Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops.

Introduction
* Logic circuits for digital systems may be combinational or sequential.

« A combinational circuit consists of logic gates whose outputs at any time are
determined from only the present combination of inputs.

* A combinational circuit performs an operation that can be specified logically by a set
of Boolean functions.

» sequential circuits employ storage elements in addition to logic gates. Their outputs
are a function of the inputs and the state of the storage elements

» Because the state of the storage elements is a function of previous inputs, the outputs
of a sequential circuit depend not only on present values of inputs, but also on past
inputs, and the circuit behavior must be specified by a time sequence of inputs and
internal states.

combinational circuit
A combinational circuit consists of an interconnection of logic gates.

» Combinational logic gates react to the values of the signals at their inputs and
produce the value of the output signal, transforming binary information from the
given input data to a required output data.

o o
— p —>
. Combinational
ninputs —> T —> m outputs
; cireutt :
— —

FIGURE 4.1
Block diagram of combinational circuit

Dr Ajay V G, Dept. of CSE , SVIT Page 1

Digital Design and Computer Organization(BCS302)

The n input binary variables come from an external source; the m output variables are
produced by the internal combinational logic circuit and go to an external destination.

Each input and output variable exists physically as an analog signal whose values are
interpreted to be a binary signal that represents logic 1 and logic 0.

If the registers are included with the combinational gates, then the total circuit must
be considered to be a sequential circuit.

For n input variables, there are 2m possible combinations of the binary inputs.

For each possible input combination, there is one possible value for each output
variable. Thus, a combinational circuit can be specified with a truth table that lists the
output values for each combination of input variables.

Design procedure

The procedure to design combinational circiut involves the following steps:

1. From the specifications of the circuit, Determine the required number of inputs
and outputs and assign a symbol to each.

2. Derive the truth table that defines the required relationship between inputs and
outputs.

3. Obtain the simplified Boolean functions for each output as a function of the
input variables.

4. Draw the logic diagram and verify the correctness of the design (manually or by
simulation).

Example for design Procedure

Code Conversion (Convert BCD to Excess-3 Code)

A code converter is a circuit that makes the two systems compatible even though
each uses a different binary code.

Since each code uses four bits to represent a decimal digit, there must be four input
variables and four output variables. We designate the four input binary variables by
the symbols A, B, C, and D, and the four output variables by w, X,y , and z .

ADD 3 to BCD to get Excess -3 Code

Dr Ajay V G, Dept. of CSE , SVIT Page 2

Digital Design and Computer Organization(BCS302)

Table 4.2
Truth Table for Code Conversion Example
Input BCD Output Excess-3 Code

A B C D w x v z
0 0 0 0 0 0 1 1
0] 0] 0 1 O 1 0] 0]
0 0] 1 0 0 1 0] 1
0] 0] 1 1 O 1 1 0]
0 1 0 0 O 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0] 1 0 0 1
0 1 1 1 1 0 1 0
1 (0] 0 0 1 0 1 1
1 0] 0 1 1 1 0 0]

Note that four binary variables may have 16 bit combinations, but only 10 are listed
in the truth table. The six bit combinations not listed for the input variables are don’t-
care combinations.

”y, i) m ", g,
00 \ 1 1 \ 1 00

Ill,‘ ”ne niy 0, Ill_.
01 g(\l 9 01

iy N . I B 1y, B
11 KL/(X X X 11 | ghae

A iy ”gy 1 ", A I'f-
10 (1 X | >.% 10
—_— e
D
x:=B'C + B'D:-+ BC'D’
’ \J
& (&
D - D
AB 00 01 11 10 AB 00 01 11 10

"y, ", iy "y ”ig, 7y "y ",
00 1 1 00 1 1

I".‘ ne ”ny ", I"‘ "0 In., "'rv
01 1 1 01 1 1

) ”ey5 "y 7. "y, B "y, ”y s my. ”g, B
11 >, € X X X 11 X X X X
A A

"y ", "y, " "y ”n, "y, ”y,

10 1 X > < 10 1 X b ¢
A ——— = S———
D D
z=D’ y=CD + C'D’

implemented with three or more levels of gates:
z =D’
yi= CD +&"D" = CD-+ €'+ D}’
x= B'€ +-B'D + BC€'D" = RB'(C *+ D) + BC'D’
= B'(€ + D) + B(C + D)’
w=A+ BC+ BD =A + B(C + D)

Dr Ajay V G, Dept. of CSE , SVIT Page 3

Digital Design and Computer Organization(BCS302)

CcD

J v

r\] y
w-—% (C +D)Y

C +D

) D—\—D— N

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter

Binary Adder- Subtractor
» A combinational circuit that performs the addition of two bits is called a half adder .
* The addition of three bits (two significant bits and a previous carry) is a full adder.

* A binary adder—subtractor is a combinational circuit that performs the arithmetic
operations of addition and subtraction with binary numbers.

» The half adder design is carried out first, from which we develop the full adder.
» Connecting n full adders in cascade produces a binary adder for two n -bit numbers.
Half Adder

e Half Adder circuit needs two binary inputs and two binary outputs.

e output variables produce the sum and carry. We assign symbols x and y to the two
inputs and S (for sum) and C (for carry) to the outputs.

e The C output is 1 only when both inputs are 1. The S output represents the least
significant bit of the sum.

e The truth table for the half adder is listed in Table 4.3 .

Dr Ajay V G, Dept. of CSE , SVIT Page 4

Digital Design and Computer Organization(BCS302)

Table 4.3 The simplified Boolean functions for the two
Half Adder outputs can be obtained directly from the truth
X y C § table. The simplified sum-of-products expressions
are
0 0 0 0
_ ' '
0 1,0 1 S =x y + Xy
1 0 0 1
f-\-. —_— s Tk
1 1 1 0

The logic diagram of the half adder implemented in sum of products is shown in Fig.
4.5(a) . It can be also implemented with an exclusive-OR and an AND gate as shown in

Fig. 4.5(b)

x —
y —
S
\" - X \
y el | S
) y 7
x —
=/ : D
'\. —
@)S=xy' +x'y b)S=xDy
C=uxy C=xy

FIGURE 4.5
Implementation of half adder

Full Adder

« A full adder is a combinational circuit that forms the arithmetic sum of three bits. It
consists of three inputs and two outputs.

* Two of the input variables, denoted by x and y , represent the two significant bits to
be added. The third input, z , represents the carry from the previous lower significant
position. The two outputs are designated by the symbols S for sum and C for carry.

Dr Ajay V G, Dept. of CSE, SVIT Page 5

Digital Design and Computer Organization(BCS302)

A

Table 4.4

Full Adder
E oy ®| € 3 - y - y
O 0 O 0 0) m"OO mlol m:‘ll mzlo) mum m|01 rr|311 mzlo
0 0 | 0 1 0 1 1 0 1
O 1 0 0 1_ my ms my g m, ms my M
0 | I 10 x{1]| 1 1 x{1 1 1 1
1 0 _ 010 1 I T
i U 1 __1_ 0 (a)S=x"y'z+x'vz' +xy'z +xyz (b)C=xy+xz+yz
l ! 0 ,1, 0 FIGURE 4.6
L_L__1 [1 1L KMapsforfull adder

S=x"y'z+x'yz' +xy'z" + xyz
C=xy+xz+yz

* The logic diagram for the full adder implemented in sum-of-products form is shown

in Fig. 4.7
v —]
) y —
X —
1D
| S T ﬂ C
- o
g
X — &
FIGURE 4.7

Implementation of full adder in sum-of-products form

Dr Ajay V G, Dept. of CSE , SVIT Page 6

Digital Design and Computer Organization(BCS302)

Implementation of Full adder using 2 half adder

We know that
S=xy’z’ + xX’yz’ + Xyz + X’y’z
=2 (XY +OY)HZ(XYHXY”)
=2 (XY YLy +XY)
=2’(x By)+tz(x Dy)
=2’ A+zA’
=z P A
S=z ®d x By

C=xy+xz+yz
=xy+xz(y+y’)+yz(x+x’)
=Xy+Xyz+xy’z+xyz+x’yz
=xy+xyz+z(xy’+x’y)

=Xy(1+2)+z(x"y)
C=xy+z(xPy)

X —;—h—‘-]_\ x@ y
J‘} L/

FIGURE 4.8

Implementation of full adder with two half adders and an OR gate

Binary Adder:

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers.
It can be constructed with full adders connected in cascade, with the output carry from
each full adder connected to the input carry of the next full adder in the chain.

* n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1

full adders.

* Eg:4bit numbers requires a chain of 4 fulladders or one HA and 3FAs.

» interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple

carry adder

* The augend bits of A and the addend bits of B are designated by subscript numbers
from right to left, with subscript O denoting the least significant bit. The carries are

Dr Ajay V G, Dept. of CSE , SVIT

Page 7

Digital Design and Computer Organization(BCS302)

connected in a chain through the full adders. The input carry to the adder is CO, and it
ripples through the full adders to the output carry C4.

By Ay B, A, By A By A
Cs C, C
FA < FA < FA . FA - ()
C, s, s, s, s,
FIGURE 4.9

Four-bit adder

To demonstrate with a specific example: consider the two binar} numbers A = 1011
and B = (0011. Their sum § = 1110 is formed with the four-bit adder as follows:

Subscript i 3 2 1 0

Input carry 0 1 1 0 C;

Augend 1 0 1 1 A;
Addend 0 0 1 1 B;

Sum 1 1 1 0 S;

Output carry 0 0 1 1 Cisq

The input carry CO in the least significant position must be 0.
The value of Ci+1 in a given significant position is the output carry of the full adder.

The carry propagation time is an important attribute of the adder because it limits the
speed with which two numbers are added.

Dr Ajay V G, Dept. of CSE , SVIT Page 8

Digital Design and Computer Organization(BCS302)

1. write Verilog code for 4 bit parallel adder using full adder as component.
module fourbit_full_adder(a, b, sum, cout) ;
input [3:0] a;
input [3:0] b;
output [3:0] sum;
output cout;
wire c¢l, ¢2, €¢3;

full adder faO(a[0], b[0], 0, sum[0], cl);
full adder fal(a[l]l, b[1l], cl, sum[l], c2);
full adder fa2(a[2], b[2], c2, sum[2], c3);
full adder fa3(a[3], b[3], c3, sum[3], cout);

endmodule

module full adder (a, b, cin, sum, cout);
input a,; b, cin;

output sum, cout;

assign sum = a“b”cin;

assign cout = (a&b) | (b&cin) | (cins&a)
endmodule

2.Write Verilog code for 4 bit adder .

HDL (Dataflow: Four-Bit Adder)

module binary_adder (

output [3: O] Sum,
output C_out,
input [3: O] A, B,
input C_in

):

assign {C_out, Sum} = A + B + C_in;
endmodule

There are several techniques for reducing the carry propagation time in a parallel adder.
The most widely used technique employs the principle of carry lookahead logic .

Carry Propagation

» Carry Propagation The addition of two binary numbers in parallel implies that all the
bits of the augend and addend are available for computation at the same time.

» Consider the circuit of the full adder shown in Fig. 4.10 . If we define two new binary
variables.

Dr Ajay V G, Dept. of CSE , SVIT Page 9

Digital Design and Computer Organization(BCS302)

» Giis called a carry generate , and it produces a carry of 1 when both Ai and Bi are 1,
regardless of the input carry Ci .

* Piis called a carry propagate , because it determines whether a carry into stage i will
propagate into stage i + 1

Half adder Half adder

[T ————= m—— e — ===
I | | I

A; A P, |

L]‘)_-\ L Ly AT PO G

Bi i ”_'/ : |)1]__../ | Si

| | : / |
| I

l G | | |
I | | Cot G
| | | I
o]]

C;

FIGURE 4.10

Full adder with P and G shown

* PE':A,'G}B{ SE':PJ:@L‘J;
G; = A;B; .41 5 G R

Binary ADDER-Subtractor

The addition and subtraction operations can be combined into one circuit with one
common binary adder by including an exclusive-OR gate with each full adder.

A four-bit adder—subtractor circuit is shown in Fig. 4.13 . The mode input M controls the
operation. When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a
subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

When M = 0, we have B @0 = B. The full adders receive the value of B , the input carry is
0, and the circuit performs Aplus B. When M =1, wehave B@ 1=B’and CO=1.The B
inputs are all complemented and a 1 is added through the input carry. The circuit performs
the operation A plus the 2’s complement of B . (The exclusive-OR with output V is for
detecting an overflow.)

Dr Ajay V G, Dept. of CSE , SVIT Page 10

Digital Design and Computer Organization(BCS302)

B; Az B> Az B, Ay By Ap

C, o <, el <,

83 8> S So
I
Y

FIGURE 4.13
Four-bit adder—subtractor (with overflow detection)

Binary Addition Example:

BINARY ADDER-SUBTRACTOR

AY

\l \\ en M =], the s “4a B2 Az B, Ay By Ay
l Cifcuit becomes a
SSEbtractor. (@)
M=
G C]
= {
P O
(L4 Q. LN O \ | \ \ {
1 |
Ca — [6) A s _‘O Fa =) Fa C=| e Co! 1
4 = Q
=) Sy = | .sl_ :’ Sl, = sl —=
(&) s = = °=0

)
FIGURE 4.13

Binary Subtraction Example:

1M =1, the s 2 By 4y B,
it becomes a \
—%—10&: 2 = \ (& [\
G) d
oo L) = \) 0
Q \ I
‘CO O O C..:\ e (i) o o= ||

Dr Ajay V G, Dept. of CSE , SVIT Page 11

Digital Design and Computer Organization(BCS302)

DECODERS

* A Decoder is a combinational circuit that converts binary information from n input
lines to a maximum of 27 unique output lines.

» The decoders presented here are called n -to- m -line decoders, where m ... 2» . Their
purpose is to generate the 27 (or fewer) minterms of n input variables.

» [Each combination of inputs will assert a unique output. The name decoder is also
used in conjunction with other code converters, such as a BCD-to-seven-segment
decoder.

2:4 decoder (1 of 4 decoder)

A 2 to 4 decoder is a combinational logic circuit that takes two input lines, typically labeled
A and B, and generates four output lines, usually labeled QO, Q1, Q2, and Q3. The decoder
analyzes the input combination and activates the corresponding output line

Inputs Outputs Truth Table
A —» —> Q| _A B |QQ Q Q
B —»| 204 |—» Q) 0 0|1 00O
Binary 1 0 110 0 0
Decoder —» Uz | 1 0|0 0 1 0
e ()]] 0 0 0 1
ABAB AND Gate
Inverter }anf\ﬁ
D—QFAB
Binary Decoded
Inputs Output

D—QfAB
}QFAB

-

Data Lines

Dr Ajay V G, Dept. of CSE , SVIT Page 12

Digital Design and Computer Organization(BCS302)

3:8 Decoder
e A 3to 8 decoder has three inputs (x,y,z) and eight outputs (DO to D7).
« Based on the 3 inputs one of the eight outputs is selected.
o The truth table for 3 to 8 decoder is shown in the below table.

e From the truth table, it is seen that only one of eight outputs (DO to D7) is selected
based on three select inputs.

e From the truth table, the logic expressions for outputs can be written as follows:

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder
= Inputs Outputs
Decoder X Y z Do D1 Dz D_g D4 Ds Dﬁ Dy
2 0 0 0 I 0o 0 0o 0o 0 0 0
. 50 - 0o 0 1 o 1 0 0o 0 0 0 0
= 0 1 0 0 0 1 0 0 0 0 0
N L 4 [0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
X > 5 1 0 1 0 0 0 0 0 1 0 0
< 1 1 0 0 0 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 0 0 1

Dr Ajay V G, Dept. of CSE , SVIT Page 13

Digital Design and Computer Organization(BCS302)

D— Do=x"y'z’
[>o

l 37 D, =x'y'z

37 Dy =%'3z"

N

Y

Y

FIGURE 4.18
Three-to-eight-line decoder

Decoders with enable inputs can be connected together to form a larger decoder circuit.
Implement 4:16 decoder using 2 3:8 decoder.
two 3-to-8-line decoders with enable inputs connected to form a 4-to-16-line decoder.

When w =0, the top decoder is enabled and the other is disabled. The bottom decoder outputs
are all 0’s, and the top eight outputs generate minterms 0000 to 0111.

When w =1, the enable conditions are reversed: The bottom decoder outputs generate
minterms 1000 to 1111.

r 3 X 8 b -
Y decoder Dy to D;

z E

3X8

decoder

E

Dyto Dys

FIGURE 4.20
4 X 16 decoder constructed with two 3 X 8 decoders

Combinational Logic Implementation

Dr Ajay V G, Dept. of CSE , SVIT Page 14

Digital Design and Computer Organization(BCS302)

Implement the following boolean function using 3:8 decoder
Sx,y,2)=3(1,2,4,7)
C(x,y,2)=>@3,56,7)

Since there are three inputs and a total of eight minterms, we need a three-to-eight-line decoder.

0pF+—
|
x —22 2 J
y—1ot 3IX8 3
decoder 4
2 s — >«
6
7
FIGURE 4.21
Implementation of a full adder with a decoder
V = AN

ate for output S forms the logical sum

um of minterms 3, 5, 6, and 7.

The decoder generates the eight minterms for ,and z . Th
of minterms 1, 2, 4, and 7. The OR gate for ouw C forms the |

ing function using 3:8 decoder

Exemplify(Implement) thzegl

i) f(a,b, c,d)=Ym (L,2, 3,4)

i) f(ab,c, d=Ym(3,57)

Encoder

* An encoder is a digital circuit that performs the inverse operation of a decoder.

Dr Ajay V G, Dept. of CSE, SVIT Page 15

Digital Design and Computer Organization(BCS302)

* An encoder has 2" (or fewer) input lines and n output lines.
* 4:2 Encoder(n=2)

4:2 Encoder
Ouputs Inputs | Outputs
D —» = Q 3 U2 D DC Q QC
\) 000 711(0°0
o 02 Q% 00 10(0 1
Inputs), —| ENCOder 010010
" | R T i A
Dy —» 0000(x x

8:3 Encoder

 an encoder is the octal-to-binary encoder whose truth table is given in Table 4.7

» It has eight inputs (one for each of the octal digits) and three outputs that generate the corresponding
binary number. It is assumed that only one input has a value of 1 at any given time.

» The encoder can be implemented with OR gates whose inputs are determined directly from the truth
table

* OQutput z is equal to 1 when the input octal digitis 1, 3, 5, or 7.

» Output y is 1 for octal digits 2, 3, 6, or 7, and

» output x is 1 for digits 4, 5, 6, or 7.

Dr Ajay V G, Dept. of CSE , SVIT Page 16

Digital Design and Computer Organization(BCS302)

D0 ———*
1 1
» X
R —m
8:3
B — >y
Encoder
4y — , 7
nn —
g —mm*
] —
Table 4.7
Truth Table of an Octal-to-Binary Encoder
Inputs Outputs
Dq D| Dz D3 04 D; Dﬁ D1 Xy 1
L0 0 0 0 0 0 0 00 0
01 0 0 0 0 0 0 0 0 1
00 1 0 0 0 0 0 0 1 0
00 0 L 0 0 0 0 0 1 1
00 0 0 1 0 0 0 L0 0
b0 00 010 Lo o1 e DA Dyt Dst Dy
00 0 0 0 0 1 0 L 1 0 y=DytDy+Ds+ Dy
00 0 0 0 0 0 1 [

.Y:D4+D5+D6+D}

« The encoder defined in Table 4.7 has the limitation that only one input can be active at any given
time. If two inputs are active simultaneously, the output produces an undefined combination. For
example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111 because all three
outputs are equal to 1.

» To resolve this ambiguity, encoder circuits must establish an input priority to ensure that only one
input is encoded.

» The output 111 does not represent either binary 3 or binary 6. To resolve this ambiguity, encoder
circuits must establish an input priority to ensure that only one input is encoded. If we establish a higher
priority for inputs with higher subscript numbers, and if both D3 and D6 are 1 at the same time, the output
will be 110 because D6 has higher priority than D3. Another ambiguity in the octal-to-binary encoder is

Dr Ajay V G, Dept. of CSE , SVIT Page 17

Digital Design and Computer Organization(BCS302)

that an output with all 0’s is generated when all the inputs are 0; but this output is the same as when DO is

equal to 1. The discrepancy can be resolved by providing one more output to indicate whether at least one

input is equal to 1.

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function.
The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same
time, the input having the highest priority will take precedence.

The truth table of a four-input priority encoder is given in Table 4.8

Table 4.8
Truth Table of a Priority Encoder
Inputs Outputs
Do D, D; Ds x y v
0 0 0 0 X X 0
1 0 0 0 0 0 1
X 1 0 0 0 1 1
X X 1 0 | 0 1
X X X 1 | 1 1

In addition to the two outputs x and y , the circuit has a third output designated by V ; this is a
valid bit indicator that is set to 1 when one or more inputs are equal to 1.

. If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not
inspected when V equals 0 and are specified as don’t-care conditions.

Input D3 has the highest priority, so, regardless of the values of the other inputs, when this input is
1, the output for xy is 11 (binary 3).

D2 has the next priority level. The output is 10 if D2 = 1, provided that D3 = 0, regardless of the

values of the other two lower priority inputs. The output for D1 is generated only if higher priority

inputs are 0.
DO D1 D2 D3 X Y Vv
0 0 0 0 X X 0 D,D; _I,)_ D,D, _Ii_
DyD, 00 0 1110 DyD, 00 01 11 10
0 0 0 1 1 1 1 m‘ m m |m m m o |m
00| X 1 1 1 0] x 1 1
0 0 1 0 1 0 1 > - ,,‘ —
01 1 1 1 01 1 1 1

D,

Dy m "y m, Dy m my,
10 ! T 10 ! 1

Digital Design and Computer Organization(BCS302)

0 0 1 1 1 1 1
0 1 0 0 0 1 1
0 1 1 1 1
0 1 1 0 1 0
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 1 1 1 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1
D;
D, DOL ’
D, '
D :
0
FIGURE 4.23

Four-input priority encoder

Multiplexer

» A multiplexer is a combinational circuit that selects binary information from one of many input lines
and directs it to a single output line

* The selection of a particular input line is controlled by a set of selection lines

« normally, there are 2" input lines and n selection lines whose bit combinations determine which input is

selected.

Dr Ajay V G, Dept. of CSE , SVIT Page 19

Digital Design and Computer Organization(BCS302)

0o

14 2™ x1

= -
| - : M
N ;
¥ : ¥ (OUTPUT)
U . U
T :
S :

: X
Iy
S Sy Sp |

SELECTION INPUTS
GENERAL BLOCK DIAGRAM OF 2™x1 MULTIPLEXER

Design 2:1 Multiplexer

S Y
I
MUX Y 0 2B :& |
]l 1
Truth Table I:
S (a) Logic diagram
(b) Block diagram FIGURE 4.24

Two-to-one-line multiplexer

y =5sTo+sh

Boolean Expression

A 2-to-1 multiplexer consists of two inputs 10 and 11, one select input S and one output Y. Depending
on the select signal, the output is connected to either of the inputs. Since there are two input signals,
only two ways are possible to connect the inputs to the outputs, so one select is needed to do these

operations.

Dr Ajay V G, Dept. of CSE , SVIT Page 20

Digital Design and Computer Organization(BCS302)

4:1 Multiplexer

5)
—

h)

Y

2)
—

75)
L/

T

So

(a) Logic diagram

Above figures represents block diagram ,truth table and implementation using basic gates of
4:1 multiplexer.

4x1 Multiplexer has four data inputs 10, 11, 12 & 13, two selection lines SO & S1 and one output Y. One of
these 4 inputs will be connected to the output based on the combination of inputs present at these two
selection lines.

8:1 multiplexer

Dr Ajay V G, Dept. of CSE , SVIT Page 21

Digital Design and Computer Organization(BCS302)

* Multiplexer circuits can be combined with common selection inputs to provide
multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer
Is shown in Fig. 4.26 . The circuit has four multiplexers, each capable of selecting
one of two input lines. Output YO can be selected to come from either input AO or
input BO. Similarly, output Y1 may have the value of Al or B1, and so on. Input
selection line S selects one of the lines in each of the four multiplexers. The enable
input E must be active (i.e., asserted) for normal operation.

* As shown in the function table, the unit is enabled when E = 0. Then, if S = 0, the
four A inputs have a path to the four outputs. If, by contrast, S = 1, the four B inputs
are applied to the outputs. The outputs have all 0’s when E = 1, regardless of the
value of S.

—
| Y
N } >
Az | ™y
s | Y
= —
= I \ ¥ e 5 (_)ul;j)u ¥
N 1 > all O°s
(8] o elect A
o 1 clect /3
B T = bl
— . unction table
o i)
E—
5 4[>M—|>07
(select)
=

=
(enable)

FIGURE 4.26
L Quadruple two-to-one-line multiplexer

Design 4:1 MUX using only 2:1 MUX

Dr Ajay V G, Dept. of CSE , SVIT Page 22

Digital Design and Computer Organization(BCS302)

Implement 8:1 Mux using 4:1mux and 2:1mux

8:1 MUX Truth Table

V=55,5T+ SSSI#3SS TR

+ 555 I+ 59§ 51$+5°S&;'I; <Y

Implement using multiplexer F (X,y,2)=(1, 2,6, 7)

X v z F
i 4 <1 MUX
0 0 0|0 F_._ &
0] (0] 1 1 A
— s,
= (0] 1 0 1 F=z
n 3 0 1 1 0
z ———t F
n-1=2 select lines Lo Yie F=o 2 |
1 0 —
= 1 1 0 1 _
2n-1 =4 data inputs T 1 1)1 FTU 1 ——3

(a) Truth table (b) Multiplexer implementation

Dr Ajay V G, Dept. of CSE , SVIT Page 23

Digital Design and Computer Organization(BCS302)

Implement using multiplexer F (A, B, C, D) = (1, 3, 4,11, 12, 13, 14, 15)

A B C D|F
o 0 0 0|0 F_—p =
o o o 1§ 8 < 1 MUX
0 0 1 0|0 gp_p < So
0 0 1 1|1 B S,
A S5
0 1 0 0|1 gp_p
0 1 0 1]0
D * 0
0 1 1 0|0 g_g :
0 1 1 1]0 >C - F
2
1 o o0 010 gF—o 0 3
1 0 0 1|0 a
1 0 1 0|0 g_p 5
1 0 1 1|1) .
1 1 0 0|1 Ln_, T—?
1 1 0 11
1 1 1 01 _
11 o1 1|1 £

FIGURE 4.28
Implementing a four-input function with a multiplexer

Three-State Gates

A multiplexer can be constructed with three-state gates—digital circuits that exhibit
three states.

Two of the states are signals equivalent to logic 1 and logic O as in a conventional
gate.

The third state is a high-impedance state in which

(1) the logic behaves like an open circuit, which means that the output appears to be
disconnected,

(2) the circuit has no logic significance, and

(3) the circuit connected to the output of the three-state gate is not affected by the
inputs to the gate. Three-state gates may perform any conventional logic, such as
AND or NAND. However, the one most commonly used is the buffer gate.

The graphic symbol for a three-state buffer gate is

Normal input A Output Y= Aif C=1
High-impedance if C =0

Control input C

The buffer has a normal input, an output, and a control input that determines the state of the
output. When the control input is equal to 1, the output is enabled and the gate behaves like
a conventional buffer, with the output equal to the normal input. When the control input is
0, the output is disabled and the gate goes to a high-impedance state, regardless of the value
in the normal input. The high-impedance state of a three-state gate provides a special

Dr Ajay V G, Dept. of CSE , SVIT Page 24

Digital Design and Computer Organization(BCS302)

feature not available in other gates. Because of this feature, a large number of three-state
gate outputs can be connected with wires to form a common line without endangering
loading effects.

. The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30
. Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state
buffers and an inverter. The two outputs are connected together to form a single output
line. (Note that this type of connection cannot be made with gates that do not have three-
state outputs.) When the select input is O, the upper buffer is enabled by its control input
and the lower buffer is disabled. Output Y is then equal to input A . When the select input
is 1, the lower buffer is enabled and Y is equal to B .

A | ™ %
] n

VWWQ

—V

(a) 2-to-1-line mux

— Sl
Select 2% 4 1

Y=AS'+ BS 1% decoder 2

Enable EN

(b) 4-to-1-line mux

HDL models of combinational circuits

* The logic of a module can be described in any one (or a combination) of the following
modeling styles:

» Behavioral modeling using procedural assignment statements with the keyword always.

e Gate-level (structural) modeling describes a circuit by specifying its gates and how
they are connected with each other. Gate-level modeling using instantiations of
predefined and user-defined primitive gates

» Dataflow modeling is used mostly for describing the Boolean equations of
combinational logic, Dataflow modeling using continuous assignment statements with
the keyword assign.

Dr Ajay V G, Dept. of CSE , SVIT Page 25

Digital Design and Computer Organization(BCS302)

Truth table

FIGURE 4.31

Relationship of Verilog constructs to truth tables, Boolean equations, and schematics

Table 4.10
Some Verilog HDL Operators
Symbol Operation Symbol Operation
+ binary addition
- binary subtraction
& bitwise AND && logical AND
I bitwise OR I logical OR
n bitwise XOR
S bitwise NOT ! logical NOT
== equality
> greater than
< less than
chematic {} concatenation
% conditional

Werite a Verilog Program For Binary Adder(4bit)

HDL (Dataflow: Four-Bit Adder)

module binary_adder (
output [3: 0]
output
input [3: 0]
input

);

Sum,
C_out,
A, B,
C in

assign {C_out, Sum} = A + B + C_in;

endmodule

Write a Verilog code for 2:1 mux(multiplexer)

Using cond itional operator

condition ? true-expression : false-expression;

Y y=5Ty+ sl

module mux2 1(I0,I1,S,Y);
input S ;

input I0,I1 ;

output Y ;

assign Y=5?I1:10;
endmodule

Using Data flow Model

module mux2 1(S,I,Y);

input S;
input [1:0]I;
output Y;

assign Y=(~S&I[0]|S&I[1]);

endmodule

Dr Ajay V G, Dept. of CSE , SVIT Page 26

Digital Design and Computer Organization(BCS302)

Al
| Al
5 Al
P Al

Behavioral modelling for 2:1 Mux

Using Case Statement

imodule mux2 1(I0,Il1,S,Y);
input 10,11 ;

input S ;

output Y ;

reg Y;

always @ (S or I0 or Il)
tbegin

icase (9S)

0: Y=10 ;

1: Y=1I1 @

endcase

end

endmodule

using If else statement

module mux2 1(I0,I1,S,Y);
input 10,11 ;
input S ;
output Y ;
reqg Y;
always @ (S ,10 , I1)
begin

1 (5==0)

Y=10 ;

else Y=I1 ;
end
endmodule

Write Verilog program for 4:1mux using CASE STATEMENT

module mux4 1(I,S,Y);
input [1:0] S;
input [3:0]I;

Timing Diagram

output Y; =l

reg Y;
always @
begin

case

E=

(I,5)

(S)

I[0];
1YY= T[1l];
2:¥= T [2]1; B

3:Y= I[3]: t:
endcase

end
endmodule

I[3]
I12]
I[1]
I[0]

S[]
S[0]

Al6]

AD
Al
Al
AD

o

Al0] WD G S |

AD
AD
AD

Dr Ajay V G, Dept. of CSE , SVIT

Page 27

Digital Design and Computer Organization(BCS302)

Write a Verilog code for below figure

D

slslele

A TDO—
= D P X X 1 1 1 1
B 0O 0 0 0 1 1 1
) 0 0 1 1 0 1 1
+— ’ g ¥ 0 1 1 0 1
P 8 I 1 1 1 1 1

(a) Logic diagram

HDL Example 4.1 (Two-to-Four-Line Decoder)

Il Gate-level description of two-to-four-line decoder
Il Refer to Fig. 4.19 with symbol E replaced by enable, for clarity.

module decoder_2x4_gates (D, A, B, enable);
output [0: 3] D;
input A B;
input enable;
wire A _not,B_not, enable_not;

not
G1 (A_not, A),
G2 (B_not, B),
G3 (enable_not, enable);
nand
G4 (D[0], A_not, B_not, enable_not),
G5 (D[1], A_not, B, enable_not),
G6 (D[2], A, B_not, enable_not),
G7 (D[3], A, B, enable_not);

endmodule

Sequential Logic

» Sequential logic refers to a type of digital logic circuit that uses
memory elements to store information.

» It consists of a combinational circuit to which storage elements are
connected to form a feedback path. The storage elements are devices
capable of storing binary information.

» a sequential circuit is specified by a time sequence of inputs, outputs,
and internal states.

Inputs ———> o Outputs
Combinational
circuit

Memory
elements

FIGURE 5.1
Block diagram of sequential circuit

Dr Ajay V G, Dept. of CSE , SVIT Page 28

Digital Design and Computer Organization(BCS302)

Differentiate between combinational logic and sequential logic

Combimnational Logic Seqguential Logic Circuits
Circuits

Atd any instant of time, the output AL any instant of time, the output is

Definiticn i= only dependent on the current determined by inputs and prewvious

state of the Inputs. outpuUts
Time is not an important Time is an important parameter. For
Time parameter. timing and synchronizing of different
depaendasmncy circuit elements, a clock signal is
necessary
The output is solely dependent rMemorny is required to store the
hMemory on inputs only . Mo neced for previous state of thie systaerm.
memory
Easy to design and implement The design of these systems requires
Desigr with the help of basic logic basic logic gates and flip flops.
gates
There is no feedback. There is at least one memory
Feadback

element in the feedback path.

They are sasier o implement but They are difficult to implement but
Hardware &

costly, dus to hardware. T heir less costhy than seguential circuits.
CosSt implementation requires more
hardware
They are faster since all Inputs They are slower, because of the
== are applied at the same time. secondary inputs. So, there is a

delay in between inputs. And the
output is gated by a clock signal.

» The storage elements (memory) used in clocked sequential circuits are
called flipflops.

» A flip-flop is a binary storage device capable of storing one bit of

information.
Inputs —— Outputs
Combinational
circuit
Flip-flops
Clock pulses 4l—>
(a) Block diagram
(b) Timing diagram of clock pulses
FIGURE 5.2

Synchronous clocked sequential circuit

Storage Elements:

1)Latches:

» Latches are digital circuits that serve as basic building blocks in the

construction of sequential logic circuits.

» They are bistable, meaning they have two stable states and can be

used to store binary information. Latches are often used for

temporary storage of data within a digital system.

» There are several types of latches, with the most common being the

Dr Ajay V G, Dept. of CSE , SVIT Page 29

Digital Design and Computer Organization(BCS302)

1)SR latch (Set-Reset latch), 2)D latch (Data latch),3) JK latch.

» Storage elements that operate with signal levels (rather than signal
transitions) are referred to as latches ; those controlled by a clock
transition are flip-flops.Latches are said to be level sensitive devices;
flip-flops are edge-sensitive devices.The two types of storage elements
are related because latches are the basic circuits from which all flip-

flops are constructed.

S T | e SOy S

Level Triggering

T LS . ks

Positive-Edge Triggering

v T I3

Negative-Edge Triggering

SR Latch (Set-Reset Latch):

* The SR latch has two inputs, S (Set) and R (Reset).It has two outputs,
Q and ~Q (complement of Q).

* When S is asserted, Q is set to 1, and when R is asserted, Q is reset
to 0.The SR latch is sensitive to the input conditions, and having both

S and R asserted simultaneously can lead to unpredictable behavior.

0 0 NO CHANGE
(Previous output)

0 1 0 1

1 1 0

1 1 FORBIDDEN

SR Latch with nor gates

1 7‘ S R|QO O
0 R (reset) 0 1 0 1 0
0 0|1 O (afterS=1,R=0)
1 0 110 1
o 0 00 1 (afterS=0,R=1)
0 v S (set) 1 1|0 0 (forbidden)

(a) Logic diagram

FIGURE 5.3 (b) Function table

SR latch with NOR gates

Dr Ajay V G, Dept. of CSE , SVIT Page 30

Digital Design and Computer Organization(BCS302)

where S and R stand for set and reset. It can be constructed from a pair of cross-coupled NOR logic gates.
The stored bit is present on the output marked Q.

While_the S and R inputs are both low, feedback maintains the Q and Q outputs in a constant state,
with Q the complement of Q. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced
high, and stays high when S returns to low; similarly, if R is pulsed high while S is held low, then the Q output
is forced low, and stays low when R returns to low.

s
T [T l Timing Diagram of SR latch
R

[T
a_l__l
LTI

SR latch with NAND gates

tn
=
12

(after §=1,R=10)

~oo [

1 (afterS=0,R=1)
0 (forbidden)

[l e R R
[l = = ']
(==l R

(b) Function table

> S
| —E

SR latch with control input

0 X X | Nochange

0 0 | Nochange

Q = 0; reset state
) | Q= 1;setstate

1 | Indeterminate

En

—0
} En § R | Nextstate of O

D—
D—

(a) Logic diagram (b) Function table

FIGURE 5.5
SR latch with control input

It consists of the basic SR latch and two additional NAND gates. The control input En
acts as an enable signal for the other two inputs. The outputs of the NAND gates stay
at the logic-1 level as long as the enable signal remains at 0. This is the quiescent
condition for the SR latch. When the enable input goes to 1, information from the S or
R input is allowed to affect the latch. The set state is reached with S = 1, R = 0, and
En = 1 active-high enabled). To change to the reset state, the inputs must be S = 0, R
= 1, and En = 1. In either case, when En returns to 0, the circuit remains in its
current state. The control input disables the circuit by applying O to En, so that the
state of the output does not change regardless of the values of S and R . Moreover,
when En = 1 and both the S and R inputs are equal to O, the state of the circuit does

Dr Ajay V G, Dept. of CSE , SVIT Page 31

Digital Design and Computer Organization(BCS302)

not change. These conditions are listed in the function table accompanying the
diagram.

D latch(transparent latch)

A D latch can store a bit value, either 1 or 0. When its Enable pin is HIGH, the value
on the D pin will be stored on the Q output.

The D Latch is a logic circuit most frequently used for storing data in digital systems.
It is based on the S-R latch, but it doesn’t have an “undefined” or “invalid” state
problem.

Datain = D Q — [)ata out : D Q Description
Memo
n 0 X Q "
- E Q T (no change)
1 0 0 Reset Qto 0
D Latch Symbol
1 1 1 SetQto 1
D 3)'
0
En D | Nextstate of 0
En
0 X | Nochange
1 0| Q=0;reset state
y 1 1| Q=1;setstate
L)
(a) Logic diagram (b) Function table
FIGURE 5.6
D latch

One way to eliminate the undesirable condition of the indeterminate state in the
SR latch is to ensure that inputs S and R are never equal to 1 at the same time.
This is done in the D latch, shown in Fig. 5.6 . This latch has only two inputs: D
(data) and En (enable). The D input goes directly to the S input, and its
complement is applied to the R input. As long as the enable input is at 0, the
cross-coupled SR latch has both inputs at the 1 level and the circuit cannot

change state regardless of the value of D . The D input is sampled when En = 1.

Dr Ajay V G, Dept. of CSE , SVIT Page 32

Digital Design and Computer Organization(BCS302)

If D = 1, the Q output goes to 1, placing the circuit in the set state. If D = O,

output Q goes to 0, placing the circuit in the reset state.

The graphic symbols for the various latches are shown in Fig. 5.7 . A latch is
designated by a rectangular block with inputs on the left and outputs on the
right. One output designates the normal output, and the other (with the bubble

designation) designates the complement output

—5 e —S — —D -
R o— —R o—— En o——
SR SR D
FIGURE 5.7

Graphic symbols for latches

STORAGE ELEMENTS : FLIP - FLOPS

» Flip-flops are fundamental building blocks in digital electronics and
sequential logic circuits.

» They are bistable multivibrators, like latches, but they are edge-

triggered and use a clock signal to control the timing of state changes.

» Flip-flops are widely used for storing binary information in electronic
systems.

Edge triggered DFF

Table of truth:
— = 2 — clk D Q Q
o o Q Q
—P> ik o > Clk o——— o 1 Q Q
(a) Positive-edge (a) Negative-edge 1 o o 1
'(:}llce:::i i)./-llwzbol for edge-triggered D flip-flop . 5 . e

Dr Ajay V G, Dept. of CSE , SVIT Page 33

Digital Design and Computer Organization(BCS302)

¥
D —— D o
D latch D latch
(master) (slave)
En En
Clk [>o

e A
The construction of a D flip-flop with two D latches and an inverter is shown in
Fig. 5.9 . The first latch is called the master and the second the slave. The
circuit samples the D input and changes its output Q only at the negative edge
of the synchronizing or controlling clock (designated as Clk). When the clock is
0, the output of the inverter is 1. The slave latch is enabled, and its output Q is
equal to the master output Y . The master latch is disabled because Clk = 0.
When the input pulse changes to the logic-1 level, the data from the external D
input are transferred to the master. The slave, however, is disabled as long as
the clock remains at the 1 level, because its enable input is equal to 0. Any
change in the input changes the master output at Y, but cannot affect the slave
output. When the clock pulse returns to 0, the master is disabled and is isolated
from the D input. At the same time, the slave is enabled and the value of Y is
transferred to the output of the flip-flop at Q . Thus, a change in the output of
the flip-flop can be triggered only by and during the transition of the clock from
1 to O.

Comparison between Latch and Flipflop

LATCH

FLIP — FLOP

Latches do not require clock signal.

Flip — flops have clock signals

A latch is an asynchronous device.

A flip — flop is a syvnchronous
device.

Latches are transparent devices i.e.
when theyv are enabled. the output
changes immediately if the input
changes.

A transition from low to high or high
to low of the clock signal will cause
the flip — flop to either change its
output or retain it depending on the
input signal_

A latch is a Level Sensitive device
(Level Triggering is involved).

A flip — flop is an edge sensitive
device (Edge Triggering is
involved).

Latches are simpler to design as
there is no clock signal (no careful
routing of clock signal is required).

When compare to latches. flip —
flops are more complex to design as
thev have clock signal and it has to
be carefully routed. This is because
all the flip — flops in a design should
have a clock signal and the delay in
the clock reaching each flip — flop

must be minimum or negligible.

The operation of a latch is faster as
they do not have to wait for any
clock signal.

Flip - flops are comparatively slower
than latches due to clock signal.

The power requirement of a latch is
less.

Power requirement of a flip — flop is
more.

A latch works based on the enable
signal_

A flip — flop works based on the
clock signal.

Dr Ajay V G, Dept. of CSE , SVIT

Page 34

Digital Design and Computer Organization(BCS302)

construction of an positive edge-triggered D flip-flop uses three SR latches

Ck D S R Q @
0 1
} s Assume(previous output)
o
0 0 1 1 0 1
) R 0 No Change
0 1 1 1 No Change
1 1 0o 1 1 0
b _
0 0 1 1 No change
FIGURE 5.10 1 0 1 0 0 1
D-type positive-edge-triggered flip-flop
JK FLIPFLOP
J
3 2 1 Table 5.1
Flip-Flop Characteristic Tables
K — 1>k
JK Flip-Flop
Cllk —> Cik e Q' K
J K I\ oE+ 1)
0 0 Q) No change
(a) Circuit diagram (b) Graphic symbol 0 il 0 Reset
FIGURE 5.12 RO Set
JK flip-flop 1 1 Q'(1) Complement

When J=1and K=0,D =Q’ + Q = 1, so the next clock edge sets the output to 1.
When J =0and K=1, D = 0, so the next clock edge resets the output to 0.
When both J = K =1 and D = Q, the next clock edge complements the output.

When both J] = K =0 and D = Q, the clock edge leaves the output unchanged.

Dr Ajay V G, Dept. of CSE , SVIT Page 35

Digital Design and Computer Organization(BCS302)

T Flipflop
Inputs Outputs
Toggle T Q Input CLK T Q“ .l Action
Pin 0 X |Qn No change
1 0 |Qn No change
Invetted 1 1 |Cn Toggle
Q Input A I
A etk ——1 ;
Clock ¢ :
T et :
D Symbol: T Flip-flop 0

T Flipflop using JK Flipflop

T =0 (J] = K= 0), a clock edge does not change the output. When T=1 (J =K =1), a

clock edge complements the output. The complementing flip-flop is useful for

designing binary counters.

—|> Clk

K S

(a) From JK flip-flop

FIGURE 5.13 ™ o No Change
T flip-flop N 1 toggle

Implementation of TFF using DFF

The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as
shown in Fig. (b). The expression for the D inputisD =T @ Q=T'Q + TQ When T =
0, D = Q and there is no change in the output. When T = 1, D = Q" and the output
complements.

D=T"Q

D=T'Q+TQ’

Dr Ajay V G, Dept. of CSE , SVIT Page 36

Digital Design and Computer Organization(BCS302)

— >

— > Clk P

(b) From D flip-flop

» Characteristic tablesA characteristic table defines the logical properties of a flip-flop by

describing its operation in tabular form. They define the next state (i.e., the state that

results from a clock transition) as a function of the inputs and the present state

» Q(t) denotes the state of the flip-flop immediately before the clock edge, and

» Q(t+ 1) denotes the state that results from the clock transition.

Table 5.1
Flip-Flop Characteristic Tables
JK Flip-Flop D F|ip-|:|0p
K £+ 1 T Flip-Flop
J Q(t + 1) D lac+ 1)
0 0 | 00 No change T Qit+1)
0 1 |0 Reset 0 |0 Reset
1 0o |1 Set 1 1 Set 0 o(n No change
1 1 |0 Complement 1 Q'(1) Complement

Characteristic equation

» It is the Boolean expression in terms of its input and output which determines
the next state of the flipflop.

T FF
QT 0 1
1
0 0 0 ;
0 1 1 |
1 0 1 1| \U
1 1 0 Q(t+1)=TQ’+QT’

Dr Ajay V G, Dept. of CSE , SVIT Page 37

Digital Design and Computer Organization(BCS302)

DFF
% o 1
0 0 0 1
0 1 1 0 |
T s o R R W
1 1 1 Q(t+1)=D
JKFF
e
Q| T |k |aeEs ‘k " " -
0lo lo |o ao =2 TR
oO| o |1 o
o1]o] e
©u | AL ol i | K'ac ;
' o Jo | R - Jelis A
ol [&)
T R IO
1 e o

Write Verilog code for Flipflops

SR flipflop JK Flipflop

module sr(clk,s,r,q); module jk(input j, input k, input clk, output req q);
input clk,s,r;

tput g;
output g always @ (posedge clk)

reg qi .
always @(posedge clk) tcase ({J,k})
begin 2'000 : q <= q;
case ({s,r}) Gl el
2'000: q <= q; // No change Z'blo: gl
2'001: q <= 1'b0; // reset 2'bll i q <= i
2'010: q <= 1'bl; // set endcase

2'bll: q <= 1'bx; // Invalid inputs endnodule
endcase

end

endmodule

Dr Ajay V G, Dept. of CSE , SVIT Page 38

Digital Design and Computer Organization(BCS302)

D flipflop

imodule dataff (clk,d,q):
input clk,d;
output reg qg;
always @ (posedge clk)
i begin
if(d == 0)
q <=0 ;
else
q=1L
end
endmodule

T Flipflop

imodule toggleff (clk,t,q):

input clk,t;
output reg g
always @ (posedge clk)

: begin

1E (L ==0)

q <=qg;
else

g =~qdr
end
endmodule

Dr Ajay V G, Dept. of CSE , SVIT

Page 39

Digital Design and Computer Organization (BCS302) Module 3

MODULE -3

Basic Structure of Computers, Instructions&Programs

Topics:

Functional Units

Basic Operational Concepts

Bus Structures

Performance —Processor Clock
Basic Performance Equation
Clock Rate

Performance Measurement.
Memory Location and Addresses
Memory Operations

Instructions and Instruction Sequencing
Addressing Modes

Introduction
1 Computer Organization explains the function and design of the various units of digital
computers that store and process information.
[It also deals with the input units of the computer which receive information from external
sources and the output units which send computed results to external destinations.
M The input, storage, processing, and output operations are governed by a list of instructions
that constitute a program.
M It deals about computer hardware and computer architecture.
M Computer hardware consists of electronic circuits, magnetic and optical storage devices,
displays, electromechanical devices, and communication facilities.
Computer architecture encompasses the specification of an instruction set and the functional
behavior of the hardware units that implement the instructions

00(
L]

Classes of Computers

e Desktop/laptop computers

 General purpose, variety of software

» Subject to cost/performance tradeoff
e Workstations

» More computing power used in engg. applications, graphics etc.
e Enterprise System/ Mainframes

e Used for business data processing
e Server computers (Low End Range)

» Network based

» High capacity, performance, reliability

« Range from small servers to building sized
e Supercomputer (High End Range)

® Iaarge scale numerical calculation such as weather forecasting, aircraft
esign

e Embedded computers
» Hidden as components of systems
e Stringent power/performance/cost constraints

Dr. Ajay V G, Dept. of CSE, SVIT 1

Digital Design and Computer Organization (BCS302) Module 3

Functional Units

» A computer consists of five functionally independent main parts: input, memory,

arithmetic and logic, output, and control units, as shown in Figure 1.1.

Memory
Arithmetic
Input and
logic
Interconnection
network
Output Control
Lo Processor
Figure 1.1 Basic functional units of a computer.

» The input unit accepts coded information from human operators using devices such
as keyboards, or from other computers over digital communication lines.

» The information received is stored in the computer*s memory, either for later use or
to be processed immediately by the arithmetic and logic unit.

» The processing steps are specified by a program that is also stored in the
memory.

» Finally, the results are sent back to the outside world through the output unit.
» All of these actions are coordinated by the control unit.

» An interconnection network provides the means for the functional units to

exchange information and coordinate their actions.

Input Units

» Computers accept coded information through input units.

The most common input device is the keyboard.

» Whenever a key is pressed, the corresponding letter or digit is automatically translated
into its corresponding binary code and transmitted to the processor.

» Many other kinds of input devices for human-computer interaction are
available,including the touchpad, mouse, joystick, and trackball.

» These are often used as graphic input devices in conjunction with displays.
Dr. Ajay V G, Dept. of CSE, SVIT 2

Digital Design and Computer Organization (BCS302) Module 3

» Microphones can be used to capture audio input which is then sampled and converted
into digital codes for storage and processing.

» Similarly, cameras can be used to capture video input.

» Digital communication facilities, such as the Internet, can also provide input
to acomputer from other computers and database servers.

The function of the memory unit is to store programs and data.

There are two classes of storage, called primary and secondary.
Primary Memory :

Primé:lry memory, also called main memory, is a fast memory that operates at electronic
speeds.

Programs must be stored in this memory while they are being executed.

The memory consists of a large number of semiconductor storage cells, each capable of
storing one bit of information. These cells are rarely read or written individually.

Instead, they are handled in groups of fixed size called words.

The memory is organized so that one word can be stored or retrieved in one basic
operation.

The number of bits in each word is referred to as the word length of the computer,
typically 16, 32, or 64 bits.

» To provide easy access to any word in the memory, a distinct address is associated with
each word location.

» Addresses are consecutive numbers, starting from 0, that identify successive locations.

» A particular word is accessed by specifying its address and issuing a control command to
the memory that starts the storage or retrieval process.

» Instructions and data can be written into or read from the memory under the control of the
processor.

» Itis essential to be able to access any word location in the memory as quickly as possible.

» A memory in which any location can be accessed in a short and fixed amount of time after
specifying its address is called a random-access memory (RAM). The time required to
access one word is called the memory access time. This time is independent of the
location of the word being accessed.

» It typically ranges from a few nanoseconds (ns) to about 100 ns for current RAM units.

Dr. Ajay V G, Dept. of CSE, SVIT 3

Digital Design and Computer Organization (BCS302) Module 3

Cache Memory

As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is used
to hold sections of a program that are currently being executed, along with any
associated data.

The cache is tightly coupled with the processor and is usually contained on the same
integrated-circuit chip.

The purpose of the cache is to facilitate high instruction execution rates.
At the start of program execution, the cache is empty.
All program instructions and any required data are stored in the main memory.

As execution proceeds, instructions are fetched into the processor chip, and a copy of
each is placed in the cache.

When the execution of an instruction requires data located in the main memory,
thedata are fetched and copies are also placed in the cache.

Secondary Storage

» Primary memory is essential, it tends to be expensive and does not retain information
when power is turned off.

» Thus additional, less expensive, permanent secondary storage is used when large
amounts of data and many programs have to be stored, particularly for information
that is accessed infrequently.

» Access times for secondary storage are longer than for primary memory.

» A wide selection of secondary storage devices is available, including magnetic disks,

optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit

o Most computer operations are executed in the arithmetic and logic unit (ALU) of
the processor.

o Any arithmetic or logic operation, such as addition, subtraction, multiplication,
division, or comparison of numbers, is initiated by bringing the required
operandsinto the processor, where the operation is performed by the ALU.

o For example, if two numbers located in the memory are to be added,
they are brought into the processor, and the addition is carried out by the ALU.

o The sum may then be stored in the memory or retained in the processor for
immediate use.

o When operands are brought into the processor, they are stored in high-speed
storage elements called registers.

o Each register can store one word of data.

o Access times to registers are even shorter than access times to the cache unit on
the processor chip.

Dr. Ajay V G, Dept. of CSE, SVIT 4

Digital Design and Computer Organization (BCS302) Module 3

Output Unit
o The output unit is the counterpart of the input unit.
o Its function is to send processed results to the outside world.

o Afamiliar example of such a device is a printer.

o Most printers employ either photocopying techniques, as in laser printers,
or ink jetstreams.

o Such printers may generate output at speeds of 20 or more pages per minute.

o However, printers are mechanical devices, and as such are quite slow
compared tothe electronic speed of a processor.

o Some units, such as graphic displays, provide both an output function, showing text

o and graphics, and an input function, through touchscreen capability.

Control Unit

» The memory, arithmetic and logic, and 1/0 units store and process information and
perform input and output operations.

» The operation of these units must be coordinated in some way.
» This is the responsibility of the control unit.

» The control unit is effectively the nerve center that sends control signals to

other units and senses their states.

> 1/0 transfers, consisting of input and output operations, are controlled by
program instructions that identify the devices involved and the information to

be transferred.

» Control circuits are responsible for generating the timing signals that govern the

transfers and determine when a given action is to take place.

» Data transfers between the processor and the memory are also managed by the

control unit through timing signals.

> A large set of control lines (wires) carries the signals used

for timing and synchronization of events in all units.

Dr. Ajay V G, Dept. of CSE, SVIT 5

Digital Design and Computer Organization (BCS302) Module 3

» The operation of a computer can be summarized as follows:

= The computer accepts information in the form of programs and data

through an input unit and stores it in the memory.

= Information stored in the memory is fetched under program control

into anarithmetic and logic unit, where it is processed
= Processed information leaves the computer through an output unit

= All activities in the computer are directed by the control unit

Dr. Ajay V G, Dept. of CSE, SVIT

COMPUTER ORGANIZATION (21cs34) Module 3

1. BASIC OPERATIONAL CONCEPTS:

The program to be executed is stored in memory. Instructions are accessed from memory to the
processor one by one and executed.
STEPS FOR INSTRUCTION EXECUTION
Consider the following instruction
Ex:1 Add LOCA, Ro
This instruction is in the form of the following instruction format
Opcode Source, Destination
Where Add is the operation code, LOCA is the Memory operand and Ro is Register operand
This instruction adds the contents of memory location LOCA with the contents of Register Ro and
the result is stored in Ro Register.
The symbolic representation of this instruction is
Ro [LOCA] + [Ro]

The contents of memory location LOCA and Register Ro before and after the execution of this
instruction is as follows

Before instruction execution After instruction execution
LOCA = 23H LOCA = 23H
Ro = 22H Ro = 45H

The steps for instruction execution are as follows
1. Fetch the instruction from memory into the IR (instruction register in CPU).

Decode the instruction 1111000000 10011010

Access the Memory Operand

Access the Register Operand

Perform the operation according to the Operation Code.

Store the result into the Destination Memory location or Destination Register.

ok wnN

Ex:2 Add Ri, Rz, R3

This instruction is in the form of the following instruction format
Opcode, Source-1, Source-2, Destination

Where R1 is Source Operand-1, R2 is the Source’Operand-2 and R3 is the Destination. This
instruction adds the contents of Register R1 with'the contents of R2 and the result is placed in R3
Register.

The symbolic representation of this instruction is

R3<«—R1] + [R2]
The contents of Registers R1,R2,R3 before and after the execution of this instruction is as follows.
Before instruction execution After instruction execution
R1 =24H R1 = 24H
R2 = 34H R2 = 34H
R3 =38H R3 =58H

Dr. Ajay V G, Dept. of CSE, SVIT 7

COMPUTER ORGANIZATION (21cs34)
The steps for instruction execution is as follows

1. Fetch the instruction from memory into the IR.

Decode the instruction

Access the First Register Operand R1

Access the Second Register Operand R2

Perform the operation according to the Operation Code.
Store the result into the Destination Register R3.

o gk wnN

CONNECTION BETWEEN MEMORY AND PROCESSOR

The connection between Memory and Processor is as shown in the figure.
The Processor consists of different types of registers.

MAR (Memory Address Register)

MDR (Memory Data Register)

Control Unit

PC (Program Counter)

General Purpose Registers

IR (Instruction Register)

ALU (Arithmetic and Logic Unit)

No ok wn P

Dr. Ajay V G, Dept. of CSE, SVIT

Module 3

Memory
N AV
MAR MDR
Control
PC Ry
R ==— Processor
I-R. -
' AL
ﬂu—!
-»t general paxpose
The functions of these registers are as follows
1. MAR
" It establishes communication between Memory and Processor
. It stores the address of the Memory Location as shown in the figure.
ek Memory
5000 + 5000" [23h
5001 | 43h
5002 | 78h
5003 | 65h
2. MDR
. It also-establishes communication between Memory and the Processor.
. It stores the contents of the memory location (data or operand), written into or read from
memory as shown in the figure.
MDR Memory
23h 23h 5000
43h 5001
78h 5002
65h 5003
3. CONTROL UNIT
. It controls the data transfer operations between memory and the processor.
. It controls the data transfer operations between 1/0O and processor.
. It generates control signals for Memory and 1/O devices.

Dr. Ajay V G, Dept. of CSE, SVIT 9

COMPUTER ORGANIZATION $21CS342 Module 3

4. PC (PROGRAM COUNTER)
> Itis a special purpose register used to hold the address of the next instruction to be
executed.
» The contents of PC are incremented by 1 or 2 or 4, during the execution of current
instruction.
» The contents of PC are incremented by 1 for 8 bit CPU, 2 for 16 bit CPU and for 4 for 32
bit CPU.

4, GENERAL PURPOSE REGISTER / REGISTER ARRAY
The structure of register file is as shown in the figure

Ro
R1
R2
Rn1
- It consists of set of registers.
. A register is defined as group of flip flops. Each flip flop is designed to store 1 bit of
data.
" It is a storage element.
. It is used to store the data temporarily during the execution of the program(eg: result).
. It can be used as a pointer to Memaory.

. The Register size depends on the processing speed of the CPU
. EX: Register size = 8 bits.for 8 bit CPU

5. IR (INSTRUCTION REGISTER
It holds the instruction to be executed. It notifies the control unit, which generates timing
signals that controls various operations in the execution of that instruction.

6. ALU (ARITHMETIC and LOGIC UNIT)
. It performs arithmetic and logical operations on given data.

Steps for reading the instruction.

PC contents are transferred to MAR and read signal is sent to memory by control unit.
The data from memory location is read and sent to MDR.

The content of MDR is moved to IR.

[PC] > MAR — Memory - MDR 2 IR
CU (read signal)

Dr. Ajay V G, Dept. of CSE, SVIT 10

COMPUTER ORGANIZATION $21CS342 Module 3
2. BUS STRUCTURE

Bus is defined as set of parallel wires used for data communication between different parts of
computer. Each wire carries 1 bit of data. There are 3 types of buses, namely

1. Address bus

2. Data bus and

3. Control bus1.
1. Address bus :

" It is unidirectional.

" The processor (CPU) sends the address of an 1/O device or Memory device by means of
this bus.

2. Data bus

. It is a bidirectional bus.

" The CPU sends data from Memory to CPU and vice versa as well as from 1/0 to CPU

and vice versa by means of this bus.

3. Control bus:

. This bus carries control signals for Memory and 1/O devices. It generates control signals
for Memory namely MEMRD and MEMWR and control signals for 1/O devices namely IORD
and IOWR.

The structure of single bus organization is as shown in the figure.

Inpat Output Memory Processor
| 1 ~ 1
| | | |
PR I NN
< v
. The 1/0 devices, Memory and CPU are connected to this bus is as shown in the figure.

It establishes communication between two devices, at a time.

Features of Single bus organization are
» Less Expensive
» Flexible to connect 1/O devices.
» Poor performance due to single bus.
There is a variation in the devices connected to this bus in terms of speed of operation.
Few devices like keyboard, are very slow. Devices like optical disk are faster. Memory and
processor are faster, but all these devices uses the same bus. Hence to provide the synchronization
between two devices, a buffer register is attached to each device. It holds the data temporarily
during the data transfer between two devices.

Dr. Ajay V G, Dept. of CSE, SVIT 11

COMPUTER ORGANIZATION $21CS342 Module 3

3. PERFORMANCE

e The performance of a Computer System is based on hardware design of the processor and
the instruction set of the processors.

e To obtain high performance of computer system it is necessary to reduce the execution
time of the processor.

e Execution time: It is defined as total time required executing one complete program.

e The processing time of a program includes time taken to read.inputs, display outputs,
system services, execution time etc.

e The performance of the processor is inversely proportional to execution time of the
processor.

More performance = Less Execution time.

Less Performance = More Execution time.

The Performance of the Computer System.is based on the following factors
Cache Memory

Processor clock

Basic Performance Equation

Instructions

Compiler

AN A

CACHE MEMORY: It is defined as a fast access memory located in between CPU and
Memory.. It is part of the processor as shown in the fig

Meadin Cache
TRETROTY ME Moy

|

—— >

< —

The processor needs more time to read the data and instructions from main memory
because main memory is away from the processor as shown in the figure. Hence it slowdown the
performance of the system.

The processor needs less time to read the data and instructions from Cache Memory
because it is part of the processor. Hence it improves the performance of the system.

PROCESSOR CLOCK: The processor circuits are controlled by timing signals called as Clock.
It defines constant time intervals and are called as Clock Cycles. To execute one instruction there
are 3 basic steps namely

1. Fetch

Dr. Ajay V G, Dept. of CSE, SVIT 12

COMPUTER ORGANIZATION $21CS342 Module 3

2. Decode
3. Execute.
The processor uses one clock cycle to perform one operation as shown in the figure
Clock Cycle — T1 T2 T3

Instruction — Fetch Decode Execute
The performance of the processor depends on the length of the clock cycle. To obtain high
performance reduce the length of the clock cycle. Let ,, P *“ be the number of clock cycles generated
by the Processor and ,, R ,, be the Clock rate .

The Clock rate is inversely proportional to the number of clock cycles.
i.e R=1/P.
Cycles/second is measured in Hertz (Hz). Eg: 500MHz, 1.25GHz.

Two ways to increase the clock rate —
» Improve the IC technology by making thelogical circuit work faster, so that the time taken
for the basic steps reduces.
» Reduce the clock period, P.

BASIC PERFORMANCE EQUATION

Let,, T, be total time required to execute the program.

Let ,,N ,,be the number of instructions contained in the program.

Let,,S ,,be the average number of steps required to one instruction.

Let ,,R* be number of clock cycles per second generated by the processor to execute one
program.

Processor Execution Time is given by
T=N*S/R
This equation is called as Basic Performance Equation.
For the programmer the value of T is important. To obtain high performance it is necessary to
reduce the values of N & S and increase the value of R

Performance of a computer can also be measured by using benchmark programs.

SPEC (System Performance Evaluation Corporation) is an non-profitable organization, that
measures performance of computer using SPEC rating. The organization publishes the application
programs and also time taken to execute these programs in standard systems.

SPEC = Running time of reference Computer

Running time of computer under test

Dr. Ajay V G, Dept. of CSE, SVIT 13

COMPUTER ORGANIZATION $21C5342 Module 3

DIFFERENCES MULTIPROCESSOR AND MULTICOMPUTER

MULTIPROCESSOR MULTICOMPUTER
1. Itis aprocess of interconnection of two or | It is a process of interconnection of two or
more processors by means of system bus. more computers by means of system bus.
2. It uses common memory to hold the data | It has its own memory to store data and
and instructions. instructions.
3. Complexity in hardware design. Not much complexity in hardware design.
4. Difficult to program for multiprocessor | Easy to program for multiprocessor system
system.

4. MEMORY LOCATIONS AND ADDRESSES

1. Memory is a storage device. It is used to store character operands, data operands and
instructions.
2. It consists of number of semiconductor cells and each cell holds 1 bit of information. A
group of 8 bits is called as byte and a group of 16 or.32 or 64 bits is called as word.
World length = 16 for 16 bit CPU and World length = 32for 32 bit CPU. Word length is defined
as number of bits in a word.
e Memory is organized in terms of bytes or words.
e The organization of memory for 32 bit processor isas shown in the fig.

|e———— nbis ———]

e fir81 word

—t— s¢cond word

et i-th word

The contents of memory location can be accessed for read and write operation. The memory is
accessed either by specifying address of the memory location or by name of the memory location.

Dr. Ajay V G, Dept. of CSE, SVIT 14

COMPUTER ORGANIZATION $21CS342 Module 3

o Address space : It is defined as number of bytes accessible to CPU and it depends on the
number of address lines.

5. BYTE ADDRESSABILITY

Each byte of the memory are addressed, this addressing used in most computers are called byte
addressability. Hence Byte Addressability is the process of assignment of address to successive
bytes of the memory. The successive bytes have the addresses1, 2,3, 4............. 2"-1. The
memory is accessed in words.

In a 32 bit machine, each word is 32 bit and the successive addresses are 0,4,8,12,... and
SO on.

Address

32 - bit word
0000 0" byte 1% byte 2" byte 3" byte
0004 4" byte 5™ byte 6" byte 7" byte
0008 8" byte o pyte 10™ byte 11™ byte

0012 12" byte 13" byte 14™ byte 15" byte

n-3 n-3" byte n-2" byte n-1" byte n" byte

BIG ENDIAN and LITTLE ENDIAN ASSIGNMENT

Two ways in' which byte addresses can be assigned in a word.
Or
Two ways in which a word is stored in memory.

1. Bigendian

2. Little endian

BIG ENDIAN ASSIGNMENT

Wl
address Byie address
@ o 1 2 3
4 a i s 5 T
>%_ 4 2¥_a4 | 25 3 2 _2 | 2¥_ 1 i
E

In this technique lower byte of data is assigned to higher address of the memory and higher
byte of data is assigned to lower address of the memory.

Dr. Ajay V G, Dept. of CSE, SVIT 15

COMPUTER ORGANIZATION $21CS342 Module 3

The structure of memory to represent 32 bit number for big endian assignment is as shown in the
above figure.

LITTLE ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to lower address of the memory and higher byte
of data is assigned to higher address of the memory.
The structure of memory to represent 32 bit number for little endian assignment is as shown in
the fig.

Byte address
] 3 2 1 1]
4 7 1 & 5 4

Eg — store.a word “JOHNSENA” in memory starting from word 1000, using Big Endian
and Little endian.

Bigendian -
1000 J 0 H N
1000 | 1001 | 1002 | 1003
1004 S E N A
1004 | 1005 | 1006 | 1007

Little endian -
1000 J 0 H N
1003 | 1002 | 1001 | 1000
1004 S E N A
1007 | 1006 | 1005 | 1004

WORD ALLIGNMENT

—>16 bit
Word size —»—» 32 bit
—»64 bit

Dr. Ajay V G, Dept. of CSE, SVIT 16

COMPUTER ORGANIZATION $21C5342 Module 3

The structure of memory for 16 bit CPU, 32 bit CPU and 64 bit CPU are as shown in the figures
1,2 and 3 respectively

For 16 bit CPU For 32 bit CPU For 64 bit CPU
5000 34H 5000 34H 5000 34H
5002 65H 5004 65H 5008 65H
5004 86H 5008 86H 5016 86H
5006 93H 5012 93H 5024 93H
5008 45H 5016 45H 5032 45H

It is process of assignment of addresses of two successive words and this address is the number of
bytes in the word is called as Word alignment.

ACCESSING CHARACTERS AND NUMBERS

The character occupies 1 byte of memory and hence byte address for memory.
The numbers occupies 2 bytes of memory and hence word address for numbers.

6. MEMORY OPERATION

Both program instructions and operands are in memory. To execute each instruction has
to be read from memory and after execution the results must be written to memory. There
aretwo types of memory operations namely 1. Memory read and 2. Memory write
Memory read operation [Load/ Read / Fetch]
Memory write operation [Store/ write]

1. MEMORY READ OPERATION:

It 15 the process of transferring of 1 word of data from memory into Accumulator (GPR).
It is also called as Memory fetch operation.

The Memary read operation can be implemented by means of LOAD instruction.

The LOAD instruction transfers 1 word of data (1 word = 32 bits) from Memory into the
Accumulator as shown in the fig.

ANER NI NERN

Memory
Accumulator

“f 5000

) 5004
32 bits 5008

5012

5016
5020

32 bits

Dr. Ajay V G, Dept. of CSE, SVIT 17

COMPUTER ORGANIZATION $21C5342 Module 3

Steps for Memory Read Operation

(1) The processor loads MAR (Memory Address Register) with the address of the memory
location.

(2) The Control unit of processor issues memory read control signal to enable the memory
component for read operation.

(3) The processor reads the data from memory into the Accumulator by means of bi-directional
data bus.

[MAR] - Memory - Accumulator

MEMORY WRITE OPERATION

e |tis the process of transferring the 1 word of data from Accumulator. into the Memory.

e The Memory write operation can be implemented by means of STORE instruction.
The STORE instruction transfers'1 word of data from Accumulator into. the Memory
location as shown in the fig.

Accumulator

I

32 bits

5000
5004
5008
5012

5016
5020

v

32 bits
Steps for Memory Write Operation

e The processor loads MAR with the address of the Memory location.
e The Control Unit issues the Memory Write control signal.

e Theprocessor transfers 1 word of data from the Accumulator into the Memory location
by means of bi-directional data bus.

7. COMPUTER OPERATIONS (OR) INSTRUCTIONS
AND INSTRUCTION EXECUTION

The Computer is designed to perform 4 types of operations, namely

o Data transfer operations

o ALU Operations

o Program sequencing and control.
o I/O Operations.

1. Data Transfer Operations

Dr. Ajay V G, Dept. of CSE, SVIT 18

COMPUTER ORGANIZATION $21C5342 Module 3

a) Data transfer between two registers.

Format: Opcode Sourcel, Destination
The processor uses MOV instruction to perform data transfer operation between two registers
The mathematical representation of this instruction is R1 — R2.
Ex : MOV R1, R2:R1and R2 are the registers.
Where MOV is the operation code, R1 is the source operand and R2 is the destination operand.
This instruction transfers the contents of R1 to R2.
EX: Before the execution of MOV R1,R2, the contents of R1 and R2 are as follows
R1=34h and R2=65h
After the execution of MOV R1, R2, the contents of R1.and R2 are as follows
R1=34H and R2=34H

b) Data transfer from memory to register
The processor uses LOAD instruction to perform data transfer operation from memory to
register. The mathematical representation of this instruction is
[LOCA] — ACC. Where ACC is the Accumulator.
Format: opcode operand
Ex: LOAD LOCA
For this instruction Memory Location is the source and Accumulator is the destination.

c) Data transfer from Accumulator register to memory
The processoruses STORE instruction to perform data transfer operation from
Accumulator register to memory location. The mathematical representation of this instruction is
[ACC] — LOCA. Where, ACC is the Accumulator.
Format: opcede. operand
Ex: STORE LOCA
For this instruction accumulator is the source and memory location is the destination.

2. ALU Operations

The instructions are designed to perform arithmetic operations such as Addition, Subtraction,
Multiplication and Division as well as logical operations such as AND, OR and NOT operations.
Ex1: ADD Ro, R1

The mathematical representation of this instruction is as follows:

Ri< [Ro] + [R1]; Adds the content of Ro with the content of Ry and result is placed in R1.
Ex2: SUB Ro, R

The mathematical representation of this instruction is as follows:

Ri— [Ro] - [R1] ; Subtracts the content of Ro from the content of Ry and result is placed

in Ri.
EX3: AND Ro, Ry ; It Logically multiplies the content of Ro with the content of Ry and result is

stored in R1. (R1= Ro AND R1)
Ex4: NOT Ro ; It performs the function of complementation.

Dr. Ajay V G, Dept. of CSE, SVIT 19

COMPUTER ORGANIZATION $21C5342 Module 3

3. I/O Operations: The instructions are designed to perform INPUT and OUTPUT
operations. The processor uses MOV instruction to perform I/O operations.
The input Device consists of one temporary register called as DATAIN register and output register
consists of one temporary register called as DATAOUT register.
a) Input Operation: It is a process of transferring one WORD of data from DATA IN
register to processor register.
Ex: MOV DATAIN, RO
The mathematical representation of this instruction is as follows,
Ro— [DATAIN]
b) Output Operation: It is a process of transferring one WORD. of data from processor
register to DATAOUT register.
Ex: MOV Ro, DATAOUT
The mathematical representation of this instruction is as follows,
[Ro]— DATAOUT

REGISTER TRANSFER NOTATION
e There are 3 locations to store the operands during the execution of the program<hamely 1.
Register 2. Memory location 3. 1/0 Port. Location is the storage space used to store the
data.
e The instructions are designed to transfer data from one location to another location.
Consider the first statement to transfer data from one location to another location
e “ Transfer the contents of Memory location whose symbolic name is given by AMOUNT into
processor register Ro.”’
e The mathematical representation of this statement is given by
Ro <« [AMOUNT]
Consider.the second statement to add data between two registers
e “Add the contents of Ro with the contents of Ry and result is stored in R”
e The mathematical representation of this statement is given by
R2 «[Ro] + [R1].
Such a notation is called as “Register Transfer Notation”.
It uses two symbols
1. A pair of square brackets [] to indicate the contents of Memory location and
2. < to indicate the data transfer operation.

ASSEMBLY LANGUAGE NOTATION
Consider the first statement to transfer data from one location to another location
o “ Transfer the contents of Memory location whose symbolic name is given by
AMOUNT into processor register Ro.”
o The assembly language notation of this statement is given by
MOV AMOUNT, Ro
Opcode Source Destination
This instruction transfers 1 word of data from Memory location whose symbolic name is given by
AMOUNT into the processor register Ro.
° The mathematical representation of this statement is given by
Ro «<— [AMOUNT]

Dr. Ajay V G, Dept. of CSE, SVIT 20

COMPUTER ORGANIZATION $21C5342 Module 3

Consider the second statement to add data between two registers

o “Add the contents of Rowith the contents of R1 and result is stored in R2”
o The assembly language notation of this statement is given by
ADD Ro, R, R2

Opcode sourcel, Source2, Destination

This instruction adds the contents of Ro with the contents of Ry and result is stored in Rz,
o The mathematical representation of this statement is given.by
R2 «—[Ro] + [R1].
Such a notations are called as “Assembly Language Notations”

BASIC INSTRUCTION TYPES
There are 3 types basic instructions namely

1. Three address instruction format
2. Two address instruction format
3. One address instruction format

Consider the arithmetic expression Z = A + B, Where A,B,Z are the Memory locations.
Steps for evaluation

Access the first memory operand whose symbolic name is given by A.

Access the'second memory operand whose symbolic name is given by B.

Perform the addition operation between two memory operands.

Storethe result into the 3" memory location Z.

The mathematical representation is Z «[A] + [B].

gk owdPE

a) Three address instruction format : Its format is as follows
| opcode | Source-1 | Source-2 | destination

Destination «— [source-1] + [source-2]
Ex: ADD A,B, Z

Z —[A] +[B]
a) Two address instruction format : Its format is as follows
| opcode | Source | Source/destination

Destination « [source] + [destination]
The sequence of two address m/c instructions to evaluate the arithmetic expression
Z — A+ B are as follows

MOV A, Ro
MOV B, Ri:
ADD Ro, Ri
MOV Ry, Z

Dr. Ajay V G, Dept. of CSE, SVIT 21

COMPUTER ORGANIZATION $21C5342 Module 3

b) One address instruction format : Its format is as follows
| opcode | operand
Ex1: LOAD B

This instruction copies the contents of memory location whose symbolic name is given
by ,,B“ into the Accumulator as shown in the figure.
The mathematical representation of this instruction is as follows
ACC « [B]

Accumulator Memory

Ex2: STORE B

This instruction copies the contents of Accumulator into memory location whose
symbolic name is given by ,,B* as shown in the figure. The mathematical representation is as
follows

B — [ACC].
Memory
Accumulator
h '
Ex3: ADD B
o This instruction adds the contents of Accumulator with the contents of Memory
location ,,B* and result is stored in Accumulator.
. The mathematical representation of this instruction is as follows
ACC —[ACC]+[B]

STRIGHT LINE SEQUENCING AND INSTRUCTION EXECUTION

Consider the arithmetic expression
C = A+B, Where A,B,C are the memory operands.
The mathematical representation of this instruction is
C=[A] +[B].
The sequence of instructions using two address instruction format are as follows
MOV A, Ro
ADD B, Ro
MOV R, C
Such a program is called as 3 instruction program.
NOTE: The size of each instruction is 32 bits.

Dr. Ajay V G, Dept. of CSE, SVIT 22

COMPUTER ORGANIZATION $21CS342 Module 3

o The 3 instruction program is stored in the successive memory locations of the
processor is as shown in the fig.

Address Conents
Begin excention here —e | Move ARD .
J-ipstruction
i+4 Add BRO program
segment
i+8 Move ROC
A -—
. Data for
8 the program
C -—

e The system bus consists of uni-directional address bus,bi-directional data bus and control bus
“It is the process of accessing the 1% instruction from memory whose address is stored in program
counter into Instruction Register (IR) by means of bi-directional data bus and at the same time
after instruction access the contents of PC are incremented by 4 in order to access the next
instruction. Such a process is called as “Straight Line Sequencing”.

INSTRUCTION EXECUTION
There are 4 steps for instruction execution

1 Fetch the instruction from memory into the Instruction Register (IR) whose address
is stored in PC.
IR« [[PC]]

2 Decode the instruction.
3 Perform the operation according to the opcode of an instruction
4 Load the result into the destination.
5 During this process, Increment the contents of PC to point to next instruction (In
32 bit machine increment by 4 address)
PC «— [PC] + 4.
6 The next instruction is fetched, from the address pointed by PC.

BRANCHING

Suppose a list of ,,N“ numbers have to be added. Instead of adding one after the other, the
add statement can be put in a loop. The loop is a straight-line of instructions executed as many
times as needed.

Dr. Ajay V G, Dept. of CSE, SVIT 23

COMPUTER ORGANIZATION $21CS342 Module 3

Move N.RI
Clear RO

| Determine address of
-~ "Next” number and add -
Program “Next™ mumber to R0

ALY

L

Decrement R1
Branch>0 LOOP

Move RO.SUM

SUM

NUMI
NUM2

The ,,N* value is copied to RL.and R1 is decremented by 1 each.time in loop. In the loop find the
value of next elemet and add it with Ro.

In conditional branch instruction, the loop continues by coming out of sequence only if
the condition is true. Here the PC value is set to ,,LLOP if the condition is true.

Branch >0 LOOP //'if >0 go to LOOP

The PC value is set to LOOP, if the previous statement value is >0 ie. after decrementing R1 value
is greater than 0.

If R1 value is not greater than O, the PC value is incremented in a mormal sequential way and the
next instruction is executed.

CONDITION CODE BITS
o The processor consists of series of flip-flops to store the status information after ALU
operation.
o It keeps track of the results of various operations, for subsequent usage.
o The series of flip-flip-flops used to store the status and control information of the processor

is called as “Condition Code Register”. It defines 4 flags. The format of condition code register
is as follows.

€ [v [z [N |

Dr. Ajay V G, Dept. of CSE, SVIT 24

COMPUTER ORGANIZATION $21CS342 Module 3

1 N (NEGATIVE) Flag:
It is designed to differentiate between positive and negative result.
Itis set 1 if the result is negative, and set to O if result is positive.
2 Z (ZERO) Flag:
It is set to 1 when the result of an ALU operation is found to zero, otherwise it is cleared.
3 V (OVER FLOW) Flag:

In case of 2° Complement number system n-bit number is capable of representing a
range of numbers and is given by -2"* to +2"* . The Over-Flow flag is set to 1 if the result
is found to be out of this range.

4 C (CARRY) Flag :

This flag is set to 1 if there is a carry from addition or borrow from subtraction,

otherwise it is cleared.

8. Addressing Modes

The various formats of representing operand in an instruction or location of an operand is called

as “Addressing Mode”. The different types of Addressing Modes are

a) Register Addressing

b) Direct Addressing

¢) Immediate Addressing

d) Indirect Addressing

e) Index Addressing

f) Relative Addressing

g) Auto Increment Addressing

h)--Auto Decrement Addressing

a. REGISTER ADDRESSING:
In this mode operands are stored in the registers of CPU. The name of the register is directly

specified in the instruction.
Ex: MOVE R1,R2 Where R1 and R2 are the Source and Destination registers respectively. This

instruction transfers 32 bits of data from R1 register

into R2 register. This instruction does not refer

|_J_, memory for operands. The operands are directly
available in the registers.

Register Set

Register Direct Addressing Mode

Dr. Ajay V G, Dept. of CSE, SVIT 25

COMPUTER ORGANIZATION $21CS342 Module 3

b. DIRECT ADDRESSING
It is also called as Absolute Addressing Mode. In this addressing mode operands are stored in the

memory locations. The name of the memory location is directly specified in the instruction.
Ex: MOVE LOCA, R:: Where LOCA is the memory location and R1 is the Register.

This instruction transfers 32 bits of data from memory location X into the General Purpose
Register R1.

S

Direct Addressing Mode

Memory

C. IMMEDIATE ADDRESSING
In this Addressing Mode operands are directly specified inthe instruction. The source field is used
to represent the operands. The operands are represented by # (hash) sign.

Ex: MOVE #23, RO

Immediate Addressing Mode

d. INDIRECT ADDRESSING

In this Addressing Mode effective address of an operand is stored in the memory location or
General Purpose Register.

The memory locations or GPRs are used as the memory pointers.
Memory pointer: It stores the address of the memory location.
There are two types Indirect Addressing

i) Indirect through GPRs
ii) Indirect through memory location

Dr. Ajay V G, Dept. of CSE, SVIT 26

COMPUTER ORGANIZATION $21C5342 Module 3

)} Indirect Addressing Mode through GPRs

In this Addressing Mode the effective address of an operand is stored in the one of the General
Purpose Register of the CPU.

Ex: ADD (R1), Ro ;Where R1and Roare GPRS

This instruction adds the data from the memory location whose address is stored in Ry with the
contents of Ro Register and the result is stored in Ro register as shown in the fig.

The diagrammatic representation of this addressing'mode is as shown in the fig.

Add (RI),R0
: Main
: [memory [' _L'
Opcode =
B Operand
Register Set Memory
Register Indirect Addressing Mode

Rl B Register

ii) Indirect Addressing Mode through Memory Location.

In this Addressing Mode, effective address of an operand is stored in the memory location.
Ex: ADD (X), Ro

This instruction adds the data from the memory location whose address is stored in ,, X*

memory location with the contents of Ro and result is stored in Ro register.

Dr. Ajay V G, Dept. of CSE, SVIT 27

COMPUTER ORGANIZATION $21CS342 Module 3

The diagrammatic representation of this addressing mode is as shown in the fig.

Add (A)RO
A B
Memory
B Operand Indirect Addressing Mode

e. INDEX ADDRESSING MODE
In this addressing mode, the effective address of an operand is computed by adding constant
value with the contents of Index Register and any one of the General Purpose Register namely
Roto Rn-1 can be used as the Index Register. The constant value is directly specified in the
instruction.

The symbolic representations of this mode are as follows

1. X (Ri) where X'is the Constant value and Rjis the GPR.
It.can be represented as
EA of an operand = X + (Ri)
2. (Ri, Ry) Where Ri and R; are the General Purpose Registers used to store
addresses of an operand and constant value respectively. It can be represented as
The EA of an operand is given by
EA =(Ri) + (R)
3. X (Ri, Rj) Where X.is the constant value and R and R;are the General Purpose Registers
used to store the addresses of the operands.It can be represented as
The EA of an operand is given by
EA=(Ri) + (Rj) + X
There are two types of Index Addressing Modes

i) Offset is given as constant.
ii) Offsetisin Index Register.

Dr. Ajay V G, Dept. of CSE, SVIT 28

COMPUTER ORGANIZATION $21CS342 Module 3

Note : Offset : It is the difference between the starting effective address of the memory location

and the effective address of the operand fetched from memory.
i) Offset is given as constant

Ex: ADD 20(R1), R2
The EA of an operand is given by
EA =20 + [R1]

This instruction adds the contents of memory location whase EA is the sum of contents of Ry
with 20 and with the contents of Rz and result is placed in R> register. The diagrammatic

representation of this mode is as shown in the fig.

Add 20(RI1),R2

—I— 1000 1000

ii) Offset is in Index Register
Ex: ADD 1000(R1) , R2 R1holds the offset address of an operand.

The EA of an operand is given by
EA =1000 + [Rq]

Rl

This instruction adds the data from the memory location whose address is given by [1000 +

[R1] with the contents of R2 and result is placed in R register.

The diagrammatic representation of this mode is as shown in the fig.

Dr. Ajay V G, Dept. of CSE, SVIT

29

COMPUTER ORGANIZATION $21C5342 Module 3

Add 1000(R1)R2

T 1000 20 R1

20 = offset :

—L 1020 Operand

f. RELATIVE ADDRESSING MODE:
In this Addressing Mode EA of an operand is computed by the Index Addressing Mode. This

Addressing Mode uses PC (Program Counter)to store the EA of the next instruction instead of

GPR.

The symbolic representation of this made is X (PC).Where X is the offset value and PC is the

Program Counter to store the address of the next instruction to be executed.

It can be represented as
EA of an operand’= X + (PC).
This Addressing Mode is useful to calculate the EA of the target memory location.

Effective Address

= Content of Program Counter + Address part of the instruction

Opcode | |

Relative Addressing Mode | Addressing Modes | Memory

Relative Addressing Mode

g. AUTO INCREMENT ADDRESSING MODE

Dr. Ajay V G, Dept. of CSE, SVIT 30

COMPUTER ORGANIZATION $21CS342 Module 3

In this Addressing Mode , EA of an operand is stored in the one of the GPR® of the CPU. This
Addressing Mode increment the contents of memory register by 4 memory locations after operand
access.
The symbolic representation is
(R))+ Where R; is the one of the GPR.
Ex: MOVE (R1)+ , R2

This instruction transfers data from the memory location whose-address is stored in R1 into R3

register and then it increments the contents of R1 by 4 memory locations.

Register Set

Memory

Auto-Increment Addressing Mode

h. AUTO DECREMENT ADDRESSING MODE

In this Addressing'Mode , EA of an operand is stored in the one of the GPR® of the CPU. This
Addressing Mode decrements the contents.of memory register by 4 memory locations and then

transfersithe data to destination.

The symbolic representation is
-(R1) Where Rj is the one of the GPR.
Ex: MOVE - (R1),R2
This instruction first decrements the contents of R1 by 4 memory locations and then transfer*s data
of that location to destination register.

Register Set Memory

Auto-Decrement Addressing Mode

Dr. Ajay V G, Dept. of CSE, SVIT 31

Digital Design &Computer Organization(BCS302) Module -4

MODULE 4
INPUT/OUTPUT ORGANIZATION

There are a number of input/output (I/O) devices, that can be connected to a
computer. The input maybe from a keyboard, a sensor, switch, mouse etc. Similarly
output may be a speaker, monitor, printer, a digital display etc.

These variety of I/O devices exchange information in varied format, having different
word length, transfer speed is different, but are connected to the same system and
exchange information with the same computer. Computer must be capable of handling
these wide variety of devices.

ACCESSING I/O-DEVICES

A single bus-structure can be used for connecting I/O-devices to a computer. The
simple arrangement of connecting set of I/O devices to memory and processor by
means of system bus is as shown in the figure. Such an arrangement is called as Single

Bus Organization.

/O dewice 1 e /O device n

Fig: A Single Bus structure

Dr.Ajay V G, Dept. of CSE 1

Digital Design &Computer Organization(BCS302) Module -4

The single bus organization consists of

o Memory
o Processor

o System bus
o I/0O device

The system bus consists of 3 types of buses:

o Address bus (Unidirectional)
o Data bus (Bidirectional)
o Control bus (Bidirectional)

The system bus enables all the devices connected to it to involve in the data
transfer operation.

The system bus establishes data communication between I/O device and
Processor.

Each I/0O device is assigned a unique set of address.

When processor places an address on address-lines, the intended-

device responds to thecommand.
The processor requests either a read or write-operation.

The requested data are transferred over the data-lines

Steps for input operation:

The address bus of system bus holds the address of the input device.

The control unit of CPU generates IORD Control signal.

When this control signal is activated the processor reads the data from

the input device (DATAIN) into the CPU register.

Steps for output operation:

The address bus of system bus holds the address of the output device.

The control unit of CPU generates IOWR control signal.

When this control signal is enabled CPU transfers the data from processor
register to outputdevice(DATAOUT)

Dr.Ajay V G, Dept. of CSE 2

Digital Design &Computer Organization(BCS302) Module -4

There are 2 schemes available to connect I/O devices to CPU

1. Memory mapped I/0:

In this technique, both memory and I/O devices use the common bus to
transfer the data to CPU .

same address space is used for both memory and 1/O interface. They have

only one set of read and write signals.

e All memory related instructions are used for data transfer between I/O and

processor.
Memory Mapped 10

e In case of memory mapped I/O input operation can be

Memory

implemented as, MOVE DATAIN , RO
l l CPU
Source destination

This instruction sends the contents of location DATAIN to register RO.

e Similarly output can be implemented as, MOVE R DAT@OUT

|

Source Destination

e The data is written from RO to DATAOUT location (address of output buffer.
2) I/0 Mapped I/0O:
» In this technique, a separate bus is used for I/O devices and memory to transfer
the data to CPU. Address space for memory and I/O devices are different.
» Hence two sets of instruction are used for data transfer.
» One set for memory operations and another set for I/O
operations. Whole address space is available for the program.

> Eg-IN AL, DX /O Mapped /O

Memory

CPU

Dr.Ajay V G, Dept. of CSE 3

Digital Design &Computer Organization(BCS302) Module -4

I/O INTERFACE

The hardware arrangement of connecting i/p device to the system bus is as shown in
the fig.

Address lines
Bus - e [}ata lines
Conirol lines
IS S TR S
1 Address Control Data and 10
E-f decoder § 1 circuits status registers * interface
T . 3

Input device

Fig: I/0O interface for an input device

This hardware arrangement is called as I/O interface. The I/O interface consists of
3 functional devicesnamely:

Dr.Ajay V G, Dept. of CSE 4

Digital Design &Computer Organization(BCS302) Module -4

1) Address Decoder:

o Its function is to decode the address, in-order to recognize the input device
whose address isavailable on the unidirectional address bus.

o The recognition of input device is done first, and then the control and data
registers becomes active.

o The unidirectional address bus of system bus is connected to input of the
address decoder asshown in figure

2) Control Circuit:
o The control bus of system bus is connected to control circuit as shown in the
fig.
o The processor sends commands to the I/O system through the control bus.
o It controls the read write operations with respect to I/O device.

3) Status & Data register:

o It specifies type of operation (either read or write operation) to be performed
on I/0O device. Itspecifies the position of operation.

4) Data Register:

o The data bus carries the data from the I/O devices to or from the processor.
The data bus isconnected to the data/ status register.
o The data register stores the data, read from input device or the data, to be
written into outputdevice. There are 2 types:
DATAIN - Input-buffer associated with keyboard.
DATAOUT -Output data buffer of a display/printer.

Data buffering is an essential task of an I/O interface. Data transfer rates of
processor and memory are high, when compared with the I/O devices, hence the
data are buffered at the I/O interface circuit and then forwarded to output device,
or forwarded to processor in case of input devices.

Dr.Ajay V G, Dept. of CSE 5

Digital Design &Computer Organization(BCS302)

Module -4

Input Device

Processor >

DATAIN Buffer

— 3 Processor

DATAOUT Buffer

— Output Device

Input & Output registers -

Various registers in keyboard and display devices -

DATAIN

DATAOUT

STATUS

DIRQ

KIRQ | SOUT § SIN

CONTROL

4

DATAIN register: is a part of input device. It is used to store the ASCII characters read from

keyboard.

DATAOUT register: is a part of output device. It is used to store the ASCII
characters to bedisplayed on the output device.
STATUS register stores the status of working of I/O devices —

o SIN flag - This flag is set to 1, when DATAIN buffer contains the data
from keyboard. The flag is set to O, after the data is passed from DATAIN
buffer to the processor.

e SOUT flag — This flag is set to 1, when DATAOUT buffer is empty and
the data can be added to it by processor. The flag is set to 0, when
DATAOUT buffer has the data to be displayed.

¢ KIRQ (Keyboard Interrupt Request) — By setting this flag to 1, keyboard
requests the processor to obtain its service and an interrupt is sent to the
processor. It is used along with the SIN flag.

Dr.Ajay V G, Dept. of CSE

Digital Design &Computer Organization(BCS302) Module -4

e DIRQ(Display Interrupt Request) — The output device request the
processor to obtain its service for output operation, by activating this flag
to 1.
Control registers
KEN (keyboard Enable) - Enables the keyboard for input operations.

DEN (Display Enable) — Enables the output device for input operations.

Program Controlled I/O

» In this technique CPU is responsible for executing data from the memory for
output and storing data in memory for executing of Programmed I/O

» Drawback of the Programmed I/O: was that the CPU has to monitor the units
all the times when the program is executing. Thus, the CPU stays in a
program loop until the I/O unit indicates that it is ready for data transfer.

» This is a time-consuming process and the CPU time is wasted a lot in keeping
an eye to the executing of program.

e It is the process of controlling the input and output operations by executing 2
sets of instruction,one set for input operation and the next set for output
operation.

e The program checks the status of I/O register and reads or displays data.
Here the I/O operationis controlled by program.

WAITK TestBit #0, STATUS (Checks SIN
flag) Branch = 0 WAITK
Move DATAIN, RO (Read character)|

*Code to read a character from DATAIN to RO]

This code checks the SIN flag, and if it is set to O (ie. If no character in DATAIN
Buffer), then move back to WAITK label. This loop continues until SIN flag is set
to 1. When SIN is 1, data ismoved from DATAIN to RO register. Thus the program,
continuously checks for input operation.

Similarly code for Output operation,

WAITD TestBit #0, STATUS (Checks SOUT flag)

Branch = 0 WAITD

Move RO, DATAOUT (Send character for

display)

The code checks the SOUT flag, and if it is set to 1 (ie. If no character in
DATAOUT Buffer), then move back to WAITK label. This loop continues until
SOUT flag is set to 0. When SOUT is O, data is moved from RO register to
DATAOUT (ie. Sent by processor).

Dr.Ajay V G, Dept. of CSE 7

Digital Design &Computer Organization(BCS302) Module -4

he keyboard, stores it in memory buffer, and
(10 Marks)

[llustrate a program that reads on

echoes it back 1o the displagilipl/ O

Move #LINE,ROD Initialize memory pointer.
WAITK TestBit #0,8TATUS Test SIN.
Branch=0 WAITK Wait for character to be entered.
Move DATAIN R1 Read character.
WAITD TestBit #1,8TATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
Move R1,DATAOUT Send character to display.
Move R1,(RO)+ Store charater and advance pointer.
Compare #S0D,R1 Check if Carriage Return.
Branch#0 WAITK If not, get another character.
Move #B0A DATAOUT Otherwise, send Line Feed.
Call PROCESS Call a subroutine to process the

the input line.

Figure 4.4 A program that reads one line from the keyboard, stores it in memory buffer,
and echoes it back to the display.
Interrupt

e It is an event which suspends the execution of one program and begins the
execution of another program.

e In program controlled I/O, a program should continuously check whether the
I/O device is free. By this continuous checking the processor execution time is
wasted. It can be avoided by I/O device sending an ‘interrupt’ to the processor,
when I/0 device is free.

e The interrupt invokes a subroutine called Interrupt Service Routine (ISR),
which resolves the cause of interrupt.

e The occurrence of interrupt causes the processor to transfer the execution
control from user program to ISR.

Mgegraml ISR

e

Interrupt
occurs —e= |
here

i+l

M

Dr.Ajay V G, Dept. of CSE 8

Digital Design &Computer Organization(BCS302) Module -4

The following steps takes place when the interrupt related instruction is

executed:

It suspends the execution of current instruction i.

Transfer the execution control to sub program from main program.
Increments the content of PC by 4 memory location.

It decrements SP by 4 memory locations.

Pushes the contents of PC into the stack segment memory whose address is
stored in SP.

It loads PC with the address of the first instruction of the sub program.

The following steps takes place when ‘return’ instruction is executed in ISR -

It transfers the execution control from ISR to user program.

It retrieves the content of stack memory location whose address is stored in SP
into the PC.

After retrieving the return address from stack memory location into the PC

it increments the Content of SP by 4 memory location.

Interrupt Latency / interrupt response time is the delay between the time

taken for receiving aninterrupt request and start of the execution of the ISR.

Generally, the long interrupt latency is unacceptable.

INTERRUPT HARDWARE

The external device (I/O device) sends interrupt request to the processor by

activating a bus lineand called as interrupt request line.
All T/O device uses the same single interrupt-request line.

One end of this interrupt request line is connected to input power supply by
means of a register.

The another end of interrupt request line is connected to INTR (Interrupt

request) signal ofprocessor as shown in the fig.

Dr.Ajay V G, Dept. of CSE 9

Digital Design &Computer Organization(BCS302) Module -4

Processor

INTR
dﬂ»m1 INTR2 e INTRx
+

e The I/O device is connected to interrupt request line by means of switch,
which is grounded asshown in the fig.

e When all the switches are open the voltage drop on interrupt request line is
equal to the Vpp andINTR value at process is O.

e This state is called as in-active state of the interrupt request line.

e The I/O device interrupts the processor by closing its switch.

e When switch is closed the voltage drop on the interrupt request line is found
to be zero, as the switch is grounded, hence INTR=0 and INTR=1.

e The signal on the interrupt request line is logical OR of requests from the
several I/O devices. Therefore, INTR=INTR1 + INTR2 + + INTRn

ENABLING AND DISABLING THE INTERRUPTS

The arrival of interrupt request from external devices or from within a process,
causes the suspension ofon-going execution and start the execution of another
program.

e Interrupt arrives at any time and it alters the sequence of execution. Hence
the interrupt to beexecuted must be selected carefully.

e All computers can enable and disable interruptions as desired.

e When an interrupt is under execution, other interrupts should not be

invoked. This is performedin a system in different ways.

e The problem of infinite loop occurs due to successive interruptions of active
INTR signals.

Dr.Ajay V G, Dept. of CSE 10

Digital Design &Computer Organization(BCS302) Module -4

e There are 3 mechanisms to solve problem of infinite loop:

1) Processor should ignore the interrupts until execution of first instruction of
the ISR.

2) Processor should automatically disable interrupts before starting the
execution of the ISR.

3) Processor has a special INTR line for which the interrupt-handling circuit.
Interrupt-circuit responds only to leading edge of signal. Such line
is called edge-triggered.
» Sequence of events involved in handling an interrupt-request:
1) The device raises an interrupt-request.
2) The processor interrupts the program currently being executed.

3) Interrupts are disabled by changing the control bits in the processor status
register (PS).

4) The device is informed that its request has been recognized. And in
response, the device deactivates the interrupt-request signal.

5) The action requested by the interrupt is performed by the interrupt-service
routine.

6) Interrupts are enabled and execution of the interrupted program is
resumed.

HANDLING MULTIPLE DEVICES
While handling multiple devices, the issues concerned are:
e How can the processor recognize the device requesting an interrupt?
e How can the processor obtain the starting address of the appropriate ISR?

e Should a device be allowed to interrupt the processor while
another interrupt isbeing serviced?
e How should 2 or more simultaneous interrupt-requests be handled?

VECTORED INTERRUPT
» A device requesting an interrupt identifies itself by sending a special-code to
processor over bus.

e Then, the processor starts executing the ISR.
» The special-code indicates starting-address of ISR.
» The special-code length ranges from 4 to 8 bits.

e The location pointed to by the interrupting-device is used to store the staring
address to ISR.

Dr.Ajay V G, Dept. of CSE 11

Digital Design &Computer Organization(BCS302) Module -4

e The staring address to ISR is called the interrupt vector.
e Processor
— loads interrupt-vector into PC &
— executes appropriate ISR.
« When processor is ready to receive interrupt-vector code, it activates INTA line.

e Then, I/O-device responds by sending its interrupt-vector code & turning off the
INTR signal.

The interrupt vector also includes a new value for the Processor Status Register

INTERRUPT NESTING

o A multiple-priority scheme is implemented by using separate INTR & INTA lines for
each device

e Each INTR line is assigned a different priority-level as shown in Figure.

- INTR1 INTRp
—
%
§ - Device Device oo Devic p
o
-y \ 1 |
INTA INT p
]
Priority

« Each device has a separate interrupt-request and interrupt-acknowledge line.
o Each interrupt-request line is assigned a different priority level.

e Interrupt requests received over these lines are sent to a priority arbitration circuit
in the processor.

o If the interrupt request has a higher priority level than the priority of the processor,
then the request is accepted.

« Priority-level of processor is the priority of program that is currently being executed.

» Processor accepts interrupts only from devices that have higher-priority than its
own.

Dr.Ajay V G, Dept. of CSE 12

Digital Design &Computer Organization(BCS302) Module -4

» At the time of execution of ISR for some device, priority of processor is raised to
that of the device.

e Thus, interrupts from devices at the same level of priority or lower are disabled.
Privileged Instruction

e Processor's priority is encoded in a few bits of PS word. (PS = Processor-Status).
» Encoded-bits can be changed by Privileged Instructions that write into PS.

« Privileged-instructions can be executed only while processor is running in
Supervisor Mode.

e Processor is in supervisor-mode only when executing operating-system routines.
Privileged Exception
e User program cannot

— accidently or intentionally change the priority of the processor &

— disrupt the system-operation.

o An attempt to execute a privileged-instruction while in user-mode leads to a
Privileged Exception.

SIMULTANEOUS REQUESTS
DAISY CHAIN

e The daisy chain with multiple priority levels is as shown in the figure.
The interrupt request line INTR is common to all devices as shown in the fig.

The interrupt acknowledge line is connected in a daisy fashion as shown in the figure.
This signal propagates serially from one device to another device.

The several devices raise an interrupt by activating INTR signal. In response to
the signal, processortransfers its device by activating INTA signal.

This signal is received by device 1. The device-1 blocks the propagation of INTA
signal to device-2,when it needs processor service.

The device-1 transfers the INTA signal to next device when it does not require the
processor service.

In daisy chain arrangement device-1 has the highest priority.
Advantage: It requires fewer wires than the individual connection

Dr.Ajay V G, Dept. of CSE 13

Digital Design &Computer Organization(BCS302)

Module -4

ARRANGEMENT OF PRIORITY GROUPS

INTRI
e |
-
| Device Device
. . INTAI
‘ . .
_ INTR p . .
-
!
: e Device Device
INTAp
Priority arbitration
circuit

 In this technique, devices are organizes in a group and each group is connected

to the processor at adifferent priority level.

» With in a group devices are connected in a daisy chain fashion as shown in the

figure.

Direct Memory Access (DMA)

e It is the process of transferring the block of data at high speed in between
main memory and externaldevice (I/O devices) without continuous

intervention of CPU is called as DMA.

e The DMA operation is performed by one control circuit and is part of the I/O

interface.

e This control circuit is called DMA controller. Hence DMA transfer operation is

performed by DMAcontroller.

e To initiate Directed data transfer between main memory and external devices

DMA controller needsparameters from the CPU.

e These 3 Parameters are:

1)Starting address of the

memory block.2)No of words to

be transferred.

3)Type of operation (Read or Write).

After receiving these 3 parameters from CPU, DMA controller establishes
directed data transferoperation between main memory and external devices

without the involvement of CPU.

Dr.Ajay V G, Dept. of CSE

14

Digital Design &Computer Organization(BCS302) Module -4

» Register of DMA Controller:
It consists of 3 type of register:

Starting address register:
The format of starting address register is as shown in the fig. It is used to store
the starting addressof the memory block.

Starting address

Word-Count register:
The format of word count register is as shown in fig. It is used to store the no of
words to be transferred from main memory to external devices and vice versa.

Word count

Status and Controller register:
The format of status and controller register is as shown in fig.

31 30 1 0

Status and control

IRQ _1 ‘ L Done
IE R/ W
a)DONE bit:

e The DMA controller sets this bit to 1 when it completes the direct data
transfer between mainmemory and external devices.
e This information is informed to CPU by means of DONE bit.

b)R/W (Read or Write):
 This bit is used to differentiate between memory read or memory write

operation.
e The R/W =1 for read operation and
= 0O for write operation.
e When this bit is set to 1, DMA controller transfers the one block of data
from external deviceto main memory.
e When this bit is set to 0, DMA controller transfers the one block of data
from main memoryto external device.

Dr.Ajay V G, Dept. of CSE 15

Digital Design &Computer Organization(BCS302) Module -4

c)IE (Interrupt enable) bit:
e The DMA controller enables the interrupt enable bit after the completion of

DMA operationd)Interrupt request (IRQ):

e The DMA controller requests the CPU to transfer new block of data
from source todestination by activating this bit.

The computer with DMA controller is as shown in the fig.:

Processor Main
memory
System bus
Disk/DMA k DMA .

i controller controller. Printer Keyboard
|
Disk Disk Network

Interface

~

e The DMA controller connects two external devices namely disk 1 and disk 2
to system bus asshown in the above fig.

e The DMA controller also interconnects high speed network devices to system
bus as shownin the above fig.

e Let us consider direct data transfer operation by means of DMA controller
without the involvement of CPU in between main memory and disk 1 as
indicated by dotted lines (in the fig.).

e To establish direct data transfer operation between main memory and disk
1. DMA controller request the processor to obtain 3 parameters namely:
1)Starting address of the memory block.
2)No of words to be transferred.
3)Type of operation (Read or Write).

o After receiving these 3 parameters from processor, DMA controller directly
transfers block ofdata main memory and external devices (disk 1).

Dr.Ajay V G, Dept. of CSE 16

Digital Design &Computer Organization(BCS302) Module -4

e This information is informed to CPU by setting respective bits in the
status and controllerregister of DMA controller.
These are 2 types of request with respect to
system bus1). CPU request.
2). DMA request.
Highest priority will be given to DMA request.

e Actually the CPU generates memory cycles to perform read and write
operations. The DMA controller steals memory cycles from the CPU to
perform read and write operations. This approach is called as “Cycle
stealing”.

e An exclusive option will be given for DMA controller to transfer block of data from
external devices to main memory and from main memory to external devices.
This technique is called as “Burst mode of operation.”

BUS ARBITRATION
e Any device which initiates data transfer operation on bus at any instant of
time is called as Bus-Master.
e When the bus mastership is transferred from one device to another device,
the next device isready to obtain the bus mastership.
e The bus-mastership is transferred from one device to another device based

on the principle ofpriority system. There are two types of bus-arbitration
technique:

a)Centralized bus arbitration:

In this technique CPU acts as a bus-master or any control unit connected to bus
can be acts as a busmaster.

BBSY
il =
i |
BR
— 1 r
Processor 1 |
DMA DMA
b—————: controller —————s=! controller —=
BG1 | BG2 2

The schematic diagram of centralized bus arbitration is as shown in the fig.:

Dr.Ajay V G, Dept. of CSE 17

Digital Design &Computer Organization(BCS302) Module -4

The following steps are necessary to transfer the bus mastership from CPU to

one of the DMA controller:

The DMA controller request the processor to obtain the bus mastership by
activating BR (Busrequest) signal

In response to this-signal the CPU transfers the bus mastership to

requested devices DMAcontrollerl in the form of BG (Bus grant).

When the bus mastership is obtained from CPU the DMA controller1 blocks the
propagation of busgrant signal from one device to another device.

The BG signal is connected to DMA controller2 from DMA controllerl in as daisy
fashion style isas shown in the figure.

When the DMA controllerl has not sent BR request, it transfers the bus
mastership to DMAcontroller2 by unblocking bus grant signal.

When the DMA controllerl receives the bus grant signal, it blocks the signal from
passing to DMA controller2 and enables BBSY signal. When BBSY signal is set to 1
the set of devices connected to system bus doesn’t have any rights to obtain the bus
mastership from the CPU.

b) Distributed bus arbitration:

¢ In this technique 2 or more devices trying to access system bus at the same
time may participatein bus arbitration process.
e The schematic diagram of distributed bus arbitration is as shown in the figure

>
=
==}
w

>
~
w
[]

:

>
o
w
=

Start- Arhitration

-

Dr.Ajay V G, Dept. of CSE 18

Digital Design &Computer Organization(BCS302) MODULE -4

e The external device requests the processor to obtain bus mastership by
enabling start arbitrationsignal.

e In this technique 4 bit code is assigned to each device to request the CPU in
order to obtain busmastership.

e Two or more devices request the bus by placing 4 bit code over the system bus.

e The signals on the bus interpret the 4 bit code and produces winner as a result
from the CPU.

e When the input to the one driver = 1, and input to the another driver = O, on
the same bus line, this state is called as “Low level voltage state of bus”.

e Consider 2 devices namely A & B trying to access bus mastership at
the same time. Let assigned code for devices A & B are 5 (0101) & 6
(0110) respectively.

e The device A sends the pattern (0101) and device B sends its pattern (0110) to
master. The signals on the system bus interpret the 4 bit code for devices A & B
produces device B as a winner.

e The device B can obtain the bus mastership to initiate direct data transfer
between external devices and main memory.

The Memory System
Speed, Size and Cost

The block diagram of memory hierarchy is as shown in the figure below.

Processor
Registers
Increasing Increasing Increasing[
size - speed ~ cost per bi
rimar
cachey L1 i
Secondar
cache | 5 Cache—SRAM
Main Memory—
DRAM
Main L1=Cache on
memory processor
L2=Cache off
processor
3 Magnetic disk
secondary
memory

Figure 5.13. Memory hierarchy.

Dr.Ajay V G, Dept. of CSE, 19

Digital Design &Computer Organization(BCS302) MODULE -4

e Registers: The fastest access is to data held in registers. Hence registers are part of
the memory hierarchy. More speed, small size and cost per bit is also more.

e At the next level of hierarchy, small amount of memory can be directly
implemented on the processor chip.

e This memory is called as processor cache. It holds the copy of recently accessed
data and instructions.

There are 2 levels of caches viz level-1 and level-2.

Level-1 cache is partof the processor and level-2 cache is placed in

between level-1 cache and main memory.

e The level-2 cache is implemented using SRAM chips

e The next level in the memory hierarchy is called as main memory. It is
implemented using dynamic memory components (DRAM). The main
memoryis larger but slower than cache memory. The access time for

main memory is ten times longer than the cache memory

® The level next in the memory hierarchy is called as secondary memory.

It holds huge amount of data.

Characteristics SRAM DEAM Magnetis Disk
Speed Very Fast Slower Much slower than
DEAM
Size Large Small Small
Cost Expensive Less Expensive Low price
Memory Speed Size
Registers Very high Lower
Primary cache High Lower
Secondary cache Low Low
Main memory Lower than High
Seconadry cache
Secondary Very low Very High
Memory

. The main-memory is built with DRAM

+« SRAMs are used in cache memory, where speed is essential.

« The Cache-memory is of 2 types:
1) Primary/Processor Cache (Levell or L1 cache)
> It is always located on the processor-chip.
2) Secondary Cache (Level2 or L2 cache)

> It is placed between the primary-cache and the rest of the memory.

Dr.Ajay V G, Dept. of CSE, 20

Digital Design &Computer Organization(BCS302) MODULE -4

« The memory is implemented using the dynamic components (SIMM, DIMM).

The access time for main-memory is about 10 times longer than the
access time for L1cache.

Cache Memory

It is the fast access memory located in between processor and main memory

Processor Cache Memory |¢——— 3| Main Memory

as shown inthe fig. It is designed to reduce the access time.

The cache memory holds the copy of recently accessed data and instructions.
e The processor needs less access time to read the data and instructions from

the cache memory as compared to main memory .
e Hence by incorporating cache memory, in between processor and main
memory, itis possible to enhance the performance of the system.
» The effectiveness of cache mechanism is based on the property of

“Locality of Reference”.

Locality of Reference

« Many instructions in the localized areas of program are executed repeatedly during
sometime of execution

« Remainder of the program is accessed relatively infrequently

« There are 2 types of locality reference:
1) Temporal

> The recently executed instructions are likely to be executed again and again.

> Eg —instruction in loops, nested loops and few function calls.

2) Spatial
> Instructions in close proximity to recently executed instruction are likely to be

executed soon. (near by instructions)

« If active segment of program is placed in cache-memory, then total execution time

can be reduced.

« Cache Block / cache line refers to the set of contiguous address locations of some
size.

« The Cache-memory stores a reasonable number of blocks at a given time.

Dr.Ajay V G, Dept. of CSE, 21

Digital Design &Computer Organization(BCS302) MODULE -4

« This number of blocks is small compared to the total number of blocks available
in main-memory.

« Correspondence b/w main-memory-block & cache-memory-block is specified by
mapping-function.

« If the cache memory is full, one of the block should be removed to create space
forthe new block, this is decided by cache control hardware.

« The collection of rule for selecting the block to be removed is called the
Replacement Algorithm.

« The cache control-circuit determines whether the requested-word currently exists in
the cache.

« If data is available, for read-operation, the data is read from cache.
« The write-operation (writing to memory) is done in 2 ways:
1) Write-throughprotocol &
2) Write-back protocol.
Write-Through Protocol

> Here the cache-location and the main-memory-locations are updated
simultaneously.

Write-Back Protocol
> This technique is to

— update only the cache-location &

— mark the cache-location with a flag bit called Dirty/Modified Bit.

» The word in memory will be updated later, when the marked-block is

removed from cache.

During Read-operation

« If the requested-word currently does not exists in the cache, then read-miss will
occur.

« To overcome the read miss, Load-through/Early restart protocol is used.
Load-Through Protocol

> The block of words that contains the requested-word is copied from the

memory into cache.

> After entire block is loaded into cache, the requested-word is forwarded
to processor.

Dr.Ajay V G, Dept. of CSE, 22

Digital Design &Computer Organization(BCS302) MODULE -4
e ——————————————

During Write-operation

« If the requested-word does not exists in the cache, then write-miss will occur.
1) If Write Through Protocol is used, the information is
written directlyinto main-memory.
2) If Write Back Protocol is used,

— then block containing the addressed word is first brought
into the cache&

— then the desired word in the cache is over-written
with the newinformation.

Mapping functions
There are 3 techniques to map main memory blocks into cache memory —
1. Direct mapped cache

2. Associative Mapping
3. Set-Associative Mapping

DIRECT MAPPING
e The simplest way to determine cache locations in which to store memory blocks

is the direct mapping technique as shown in the figure.

o If there are 128

blocks in a cache, the

+ Cache block number= (block-j of main memory)%128;

block-j of the main-memory maps onto block-jmodulo-128 of the cache . When the memory-blocks
0, 128, & 256 are loaded into cache, the block is stored in cache-block 0. Similarly, memory-
blocks 1, 129, 257 are stored in cache-block 1.(eg:1mod 128=1,
129 mod 128=1)
 The contention may arise

1) Even when the cache is full.

2) But more than one memory-block is mapped onto a given cache-block position.
 The contention is resolved by allowing the new blocks to overwrite the currently resident-block.

Memory-address determines placement of block in the cache.

Dr.Ajay V G, Dept. of CSE, 23

Digital Design &Computer Organization(BCS302) MODULE -4

main memory block has to be placed in particular
cache block number by using below formula
Cache block number=main memory block number
% number of blocks present in cache memory.

For eg: main memory block 129 has to be placed in
cache block number 1 by using above formulai.e
Cache block number=129 % 128 (consider
remainder thatis 1).

Cache block number=258 % 128 (consider
remainder that is 2).

Main memory block 258 has to be placed in cache
block 2

ock 127

Block 255

Tag Block Word
I 5 I 7 l 4 lMainmcmuryadd:ess

e The main memory block is loaded into cache block by means of memory address. The main memory
address consists of 3 fields as shown in the figure.

. Each block consists of 16 words. Hence least significant 4 bits are used to select one of the 16
words.

e The 7bits of memory address are used to specify the position of the cache block, location. The most
significant 5 bits of the memory address are stored in the tag bits. The tag bits are used to map one of
2% =32 blocks into cache block location (tag bit has value 0-31).

o The higher order 5 bits of memory address are compared with the tag bits associated with cache
location. If they match, then the desired word is in that block of the cache.

e If there is no match, then the block containing the required word must first be read from the main memory

Dr.Ajay V G, Dept. of CSE, 24

Digital Design &Computer Organization(BCS302) MODULE -4

and foaded Into the cacne. 1t 15 VEry easy 0 |mp|emenf, DUT_ not TIexiDIe.

2. Associative Mapping:

e Itis also called as associative mapped cache. It is much more flexible.

e In this technique main memory block can be placed into any cache block
position.

e In this case, 12 tag bits are required to identify a memory block when it is
resident of the cache memory.

e The Associative Mapping technique is illustrated as shown in the fig.

Main

memory

12 4 Main memory address

e In this technique 12 bits of address generated by the processor are compared with
the tag bits of each block of the cache to see if the desired block is present. This

is called as associative mapping technique.

Dr.Ajay V G, Dept. of CSE, 25

Digital Design &Computer Organization(BCS302) MODULE -4

3.Set Associative Mapping:

e [t is the combination of direct and associative mapping techniques.

e The blocks of cache are divided into several groups. Such a groups are called as
sets.

e Each set consists of number of cache blocks. A memory block is loaded into one
of the cache sets.

e The main memory address consists of three fields, as shown in the figure.

e The lower 4 bits of memory address are used to select a word from a 16
words.

e A cache consists of 64 sets as shown in the figure. Hence 6 bit set field is used
to select a cache set from 64 sets.
e As there are 64 sets, the memory is divided into groups containing 64 blocks,
where each group is given a tag number.
e The most significant 6 bits of memory address is compared with the tag
fields of each set to determine whether memory block is available or not.
e The following figure clearly describes the working principle of Set
Associative Mapping technique.
- cache that has “k” blocks per set is called as “k-way set associative cache".
« Each block contains a control-bit called a valid-bit.
« The Valid-bit indicates that whether the block contains valid-data (updated data).

« The dirty bit indicates that whether the block has been modified during its cache
residency.

Valid-bit=0 - When power is initially applied to system.

Valid-bit=1 - When the block is loaded from main-memory at first time.
« If the main-memory-block is updated by a source & if the block in the source
is already exists in the cache, then the valid-bit will be cleared to “O".
 If Processor & DMA uses the same copies of data then it is called as Cache

Coherence Problem.

. Advantages:

Dr.Ajay V G, Dept. of CSE, 26

Digital Design &Computer Organization(BCS302) MODULE -4
1) Contention proplem ol direct mapping Is solved Dy naving lew cholces for block

placement.

2) The hardware cost is decreased by reducing the size of associative search.

Block 4095

Tag Set "Word
6 6 4 Main memory address

Dr.Ajay V G, Dept. of CSE, 27

Digital Design &Computer Organization(BCS302) MODULE -4

Dr.Ajay V G, Dept. of CSE, 28

Digital Design and Computer Organization (BCS302) Module V

MODULE 5:
Basic Processing Unit and Pipelining

Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU
operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete
Instruction.

Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance.

SOME FUNDAMENTAL CONCEPTS

The processing unit which executes machine instructions and coordinates
the activities of other units of computer is called the Instruction Set
Processor (ISP) or processor or Central Processing Unit (CPU).

The primary function of a processor is to execute the instructions stored
in memory. Instructions are fetched from successive memory locations
and executed in processor, until a branch instruction occurs.

« To execute an instruction, processor has to perform following 3 steps:

1. Fetch contents of memory-location pointed to by PC. Content of this
location isan instruction to be executed. The instructions are loaded
into IR, Symbolically, this operation is written as:
IR « [[PC]]

2. Increment PC by
4.PC «[PC] +4

3. Carry out the actions specified by instruction (in the IR).

The steps 1 and 2 are referred to as Fetch Phase.
Step 3 is referred to as Execution Phase.

SINGLE BUS ORGANIZATION

e Here the processor contain only a single bus for the movement of data,
address andinstructions.
« ALU and all the registers are interconnected via a Single Common Bus
(Figure 7.1).
e Data & address lines of the external memory-bus is connected to
the internal processor-bus via MDR & MAR respectively.
(MDR -> Memory Data Register, MAR -> Memory Address Register).
« MDR has 2 inputs and 2 outputs. Data may be loaded
— into MDR either from memory-bus (external) or
— from processor-bus (internal).
« MAR's input is connected to internal-bus; MAR's output is connected to
external- bus. (address sent from processor to memory only)

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Module V

e Instruction Decoder & Control Unit is responsible for

— Decoding the instruction and issuing the control-signals to all the units

inside theprocessor.

— implementing the actions specified by the instruction (loaded in the IR).

 Processor Registers - Register RO through R(n-1) are also called

as GeneralPurpose Register.

The programmer can access these registers for general-purpose use.

e Temporary Registers — There are 3 temporary registers in the processor.
Registers

-Y, Z & Temp are used for temporary storage during program-

execution. The programmer cannot access these 3 registers.

In ALU,1) “A” input gets the operand from the output of the multiplexer(MUX).

2) “B* input gets the operand directly from the processor-bus.

e There are 2 options provided for “A” input of the ALU.

e MUX is used to select one of the 2 inputs.

e MUX selects either

— output of Y or

— constant-value 4(which is used to increment PC content).

e An instruction is executed by performing one or more of the following
operations:

|

" L '

A gt
ALU Sub
soavbnal . ALL
Himes .
Carry-in

I —

AY
Figure 7.1 Singlebus orgonizobion of the dotapath inside o processor,

¢
e

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302) Module V

1) Transfer a word of data from one register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.

4) Store a word of data from a register into a given memory-location.
« Disadvantage: Only one data-word can be transferred over the bus in a
clock cycle. Solution: Provide multiple internal-paths. Multiple paths allow
several data- transfers to take place in parallel.

REGISTER TRANSFERS
e Instruction execution involves a sequence of steps in which data are
transferred from one register to another.
« For each register, two control-signals are used: Riin & Riout. These are
called Gating Signals
e Riin=1,the data on the bus are loaded into Ri,
¢ Riout=1,the contents of register are placed on the bus,
¢ Riout=0,the bus can be used for transferring data from other registers.
Suppose we wish to transfer the contents of register R1 to register R2.This
can be accomplished as follows:
1. Enable the output of registers R1 by setting Rlout to 1 (Figure 7.2).
This places thecontents of R1 on processor-bus.
2. Enable the input of register R4 by setting R4in to 1.This loads data from
processor-bus into register R4.
e All operations and data transfers within the processor take place
within time-periods defined by the processor-clock.

Imternal processor
bz

=

.
it

Comstant 4

4

r R,

Figure 7.2 Input and output gating for the ragisters in : Figure 7.3 Input and output gating for one register bit.
Figura 7.1.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

e The control-signals that govern a particular transfer are asserted at the
start of theclock cycle.

Input & Output Gating for one Register Bit
Implementation for one bit of register Ri(as shown in fig 7.3)
» All operations and data transfers are controlled by the processor clock.

e A 2-input multiplexer is used to select the data applied to the input
of an edge-triggered D flip-flop.
e Riin=1,Multiplexer selects data on the bus. This data will be loaded into
flip-flop at rising-edgeof clock.
« Riin=0,Multiplexer feeds back the value currently stored in the flipflop
e Q output of flip-flop is connected to bus via a tri-state gate.
e When Riout=0, gates output in the high-impedance state.
e When Riout=1,gate drives the bus to O or 1,depending on the value

of Q.

PERFORMING AN ARITHMETIC OR LOGIC OPERATION(refer fig:7.2)
e The ALU is a combinational circuit that has no internal storage.
e The ALU performs arithmetic and logic operations on the 2 operands
applied to its A and Binputs.
« ALU gets the two operands, one is from MUX and another from bus. The
result is temporarily stored in register Z.
e Therefore, a sequence of operations [R3]=[R1]+[R2].
1) Rlout, Yin
2) R2out, Select Y, Add, Zin
3) Zout, R3in
Instruction execution proceeds as follows:
Step 1 --> Contents from register R1 are loaded into register Y.
Step2 --> Contents from Y and from register R2 are applied to the A and
B inputs of ALU;Addition is performed & Result is stored in the Z register.
Step 3 --> The contents of Z register is stored in the R3 register.
» The signals are activated for the duration of the clock cycle
corresponding to thatstep. All other signals are inactive.
FETCHING A WORD FROM MEMORY
e To fetch instruction/data from memory, the processor has to specify
the address of the memory location where this information is
stored and request a Read operation.
. processor transfers required address to MAR. At the same time, processor
issues Read signal on control-lines of memory-bus.
. When requested-data are received from memory, they are stored in MDR.
From MDR, they are transferred to other registers in the processor.
The Connections for register MDR has shown in fig 7.4

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

G e it
L
A y mRtmrE MDR,,,
i +A
MDR
[[
{/ \4
MDR,-“E b’mRin

Figure 7.4 Connection and control signols for register MDR.

CONTROL-SIGNALS OF MDR
« The MDR register has 4 control-signals (Figure 7.4):

1) MDRin & MDRout control the connection to the internal processor data bus
&

2) MDRinE & MDRoutE control the connection to the external memory Data
bus.
« Similarly, MAR register has 2 control-signals.

1) MARin: controls the connection to the internal processor address bus &

2) MARout: controls the connection to the memory address bus.

The response time of each memory access varies. To accommodate this

MFC is used(MFC= Memory Function Completed)

MFC=1 indicate that contents of specified location have been read and are

available on the data lines of the memory bus.

e Consider the instruction Move (R1),R2. The action needed to execute this
instruction are

1. MAR « [R]]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory
4. Load MDR from the memory bus

5. R2 «[MDR]

The sequence of steps is (Figure 7.5):
1) R1lout, MARin,Read ;desired address is loaded into MAR & Read command is
issued.
2) MDRing, WMFC; load MDR from memory-bus & Wait for MFC response
from memory.
3) MDRout, R2in; load R2 from MDR.
where WMFC=control-signal that causes processor's control. circuitry
to wait forarrival of MFC signal.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Step |-—- 1 —--i=- 2 -—i—~ 3'-—-—,
we LML L 1L
" e

: | '
Address X

Figure 7.5 Timing of o memory Read operafion.

Storing a Word in Memory
» Consider the instruction Move R2,(R1). This requires the following sequence:
1) R1out, MAR;, ;desired address is loaded into MAR.
2) R2,ut, MDRj,,Write ;data to be written are loaded into MDR & Write
commandis issued.
3) MDRoute, WMFC ;load data into memory-location pointed by R1 from MDR.

EXECUTION OF A COMPLETE INSTRUCTION
e Consider the instruction Add (R3),R1 which adds the contents of a
memory-location pointed by R3 to register R1.

« Executing this instruction requires the following actions:
1) Fetch the instruction.
2) Fetch the first operand.
3) Perform the addition
4) Load the result into R1.

Fig:7.6 gives the sequence of control steps required to perform these operations for the
single -bus architecture .

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

VVVY

Step Action

PCout, MAR,y,, Read, Selectd, Add, Z,
Zouty PCin; Yin, WMFC

MDRus, IRz,

R3,u:, MAR,,,, Read

Rlyu, Yin, WMFC

MDR v, SelectY, Add, Zyn

Zoue; Rlin, End

=] o o o L bI

Figure 7.6 Conirol sequence for exaculion of the instruction Add (R3),R1

Stepl--> The instruction-fetch operation is initiated by loading contents of PC
into MAR & sending a Read request to memory. The Select signal is set to
Select4, which causes the Mux to select constant 4. Thisvalue is added to
operand at input B (PC*s content), and the result is stored in Z.

Step2--> Updated value in Z is moved to PC. This completes the PC increment
operationand PC will now point to next instruction.

Step3--> Fetched instruction is moved into MDR and then to IR. The step 1
through 3 constitutes the Fetch Phase.

At the beginning of step 4, the instruction decoder interprets the contents of
the IR. This enables the control circuitry to activate the control-signals for steps
4 through 7.

The step 4 through 7 constitutes the Execution Phase.
Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
Step5--> Contents of R1 are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR,
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new
instruction fetch cycle to begin by returning to stepl.

Pipelining:
Basic Concepts:
The speed of execution of programs is influenced by many factors.

One way to improve performance is to use faster circuit technology to build the
processor and the main memory. Another possibility is to arrange the hardware so that
more than one operation can be performed at the same time. In this way, the number
of operations performed per second is increased even though the elapsed time needed
to perform any one operation is not changed.

Pipelining is a particularly effective way of organizing concurrent activity in a
computer system.

The technique of decomposing a sequential process into sub-operations, with each sub-
operation being executed in a dedicated segment .

pipelining is commonly known as an assembly-line operation.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

Consider how the idea of pipelining can be used in a computer. The processor executes
a program by fetching and executing instructions, one after the other.

Let Fi and Ei refer to the fetch and execute steps for instruction Ii . Execution of a
program consists of a sequence of fetch and execute steps, as shown in Figure a.

— Time

(a) Sequential execution

Interstage buffer

Bl

Instruction .
SUTHC Execution
fetch

- unit
unit

(b) Hardware organization

Now consider a computer that has two separate hardware units, one for fetching
instructions and another for executing them, as shown in Figure b. The instruction
fetched by the fetch unit is deposited in an intermediate storage buffer, B1. This buffer
is needed to enable the execution unit to execute the instruction while the fetch unit is
fetching the next instruction. The results of execution are deposited in the destination
location specified by the instruction.

The computer is controlled by a clock.

any instruction fetch and execute steps completed in one clock cycle.

Operation of the computer proceeds as in Figure 8.1c.

In the first clock cycle, the fetch unit fetches an instruction I1 (step F1) and
stores it in buffer B1 at the end of the clock cycle.

In the second clock cycle, the instruction fetch unit proceeds with the fetch
operation for instruction 12 (step F2). Meanwhile, the execution unit performs the
operation specified by instruction 11, which is available to it in buffer B1 (step E1).
By the end of the second clock cycle, the execution of instruction 11 is completed
and instruction 12 is available. Instruction 12 is stored in B1, replacing I1, which is
no longer needed.

Step E2 is performed by the execution unit during the third clock cycle, while
instruction I3 is being fetched by the fetch unit. In this manner, both the fetch and
execute units are kept busy all the time. If the pattern in Figure 8.1c can be
sustained for a long time, the completion rate of instruction execution will be twice
that achievable by the sequential operation depicted in Figure a.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

— Time

Clock cycle | 2 3 -
Instruction

I F, E,

I Fa E»

I5 Fs E-

(c) Pipelined execution

Figure 8.1 Basic idea of instruction pipelining.

Idea of Pipelining in a computer

a pipelined processor may process each instruction in four steps, as follows:
F (Fetch): read the instruction from the memory.

D (Decode): decode the instruction and fetch the source operand(s).

E (Execute): perform the operation specified by the instruction.

W (Write): store the result in the destination location.

—» Time

Clock cycle I 2 3 4 5 6 7
Instruction

I Fy D, E, W,

I, F> D, E; W,

| 3 Fy l); E; W,

Iy Fy Dy Ey Wy

(a) Instruction execution divided into four steps

Interstage buffers

D : Decode
F : Fetch instruction E: Execute W : Write
instruction and fetch operation results
operands

Bl B2 B3

(b) Hardware organization

The sequence of events for this case is shown in Figure a. Four instructions are in
progress at any given time. This means that four distinct hardware units are
needed, as shown in Figure b. These units must be capable of performing their
tasks simultaneously and without interfering with one another. Information is
passed from one unit to the next through a storage buffer. As an instruction
progresses through the pipeline, all the information needed by the stages

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

downstream must be passed along. For example, during clock cycle 4, the
information in the buffers is as follows:

>

>

Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being
decoded by the instruction-decoding unit.

Buffer B2 holds both the source operands for instruction 12 and the
specification of the operation to be performed. This is the information
produced by the decoding hardware in cycle 3. The buffer also holds the
information needed for the write step of instruction 12 (stepW2). Even though
it is not needed by stage E, this information must be passed on to stage W
in the following clock cycle to enable that stage to perform the required Write
operation.

Buffer B3 holds the results produced by the execution unit and the
destination information for instruction I1.

Role of Cache Memory

Each stage in a pipeline is expected to complete its operation in one clock
cycle. Hence, the clock period should be sufficiently long to complete
the task being performed in any stage. If different units require different
amounts of time, the clock period must allow the longest task to be
completed. A unit that completes its task early is idle for the remainder of
the clock period. Hence, pipelining is most effective in improving
performance if the tasks being performed in different stages require about
the same amount of time. This consideration is particularly important for the
instruction fetch step, which is assigned one clock period in Figure a. The
clock cycle has to be equal to or greater than the time needed to complete a
fetch operation. However, the access time of the main memory may be as
much as ten times greater than the time needed to perform basic pipeline
stage operations inside the processor, such as adding two numbers. Thus, if
each instruction fetch required access to the main memory, pipelining
would be of little value.

The use of cache memories solves the memory access problem. In
particular, when a cache is included on the same chip as the processor,
access time to the cache is usually the same as the time needed to perform
other basic operations inside the processor. This makes it possible to divide
instruction fetching and processing into steps that are more or less equal in
duration. Each of these steps is performed by a different pipeline stage, and
the clock period is chosen to correspond to the longest one.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

A\

Pipeline Performance:

The potential increase in performance resulting from pipelining is
proportional to the number of pipeline stages.

However, this increase would be achieved only if pipelined operation as
depicted in Figure a could be sustained without interruption throughout
program execution.

Unfortunately, this is not the True.

Floating point may involve many clock cycle.

For a variety of reasons, one of the pipeline stages may not be able to
complete its processing task for a given instruction in the time allotted. For
example, stage E in the four stage pipeline of Figure b is responsible for
arithmetic and logic operations, and one clock cycle is assigned for this task.
Although this may be sufficient for most operations, some operations, such
as divide, may require more time to complete. Figure shows an example in
which the operation specified in instruction 12 requires three cycles to
complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the Write
stage must be told to do nothing, because it has no data to work with.
Meanwhile, the information in buffer B2 must remain intact until the
Execute stage has completed its operation. This means that stage 2 and, in
turn, stage 1 are blocked from accepting new instructions because the
information in B1 cannot be overwritten. Thus, steps D4 and F5 must be
postponed as shown.

— Time
Clock cycle 1 2 3 4 5 6 7 8 9

Instruction

I F, D, E, | W

l F) D, E, W

l F D; B E W

: T i O TR

I5 Fs D5 | Es

Eg: for Data Hazard

Figure 8.3 Effect of an execution operation taking more than one clock cycle.

Pipelined operation in Figure 8.3 is said to have been stalled for two clock

cycles. Normal pipelined operation resumes in cycle 7. Any condition that

causes the pipeline to stall is called a hazard. We have just seen an example
of a data hazard.

1) A data hazard is any condition in which either the source or the
destination operands of an instruction are not available at the time
expected in the pipeline. As a result some operation has to be
delayed, and the pipeline stalls.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

2) control hazards or instruction hazards: The pipeline may also be stalled
because of a delay in the availability of an instruction.

For example, this may be a result of a miss in the cache .

3) A third type of hazard known as a structural hazard: This is the
situation when two instructions require the use of a given hardware
resource at the same time.

The effect of a cache miss on pipelined operation is illustrated in Figure.
Instruction I1 is fetched from the cache in cycle 1, and its execution proceeds
normally. However, the fetch operation for instruction 12, which is started in
cycle 2, results in a cache miss. The instruction fetch unit must now suspend
any further fetch requests and wait for 12 to arrive. We assume that
instruction 12 is received and loaded into buffer B1 at the end of cycle 5. The
pipeline resumes its normal operation at that point.

— Time

Clock cycle l 2 3 4 5 6 7 8 9
Instruction

I F, D, E, W,

I F D; E W

— Time

Clock cycle 1 2 3 e 5 6 7 8 0
Stage
F: Feich F, E, F, F, Fy F;
D: Decode D, idle idle idle D> Dy
E: Execute E, idle idle dle E, E,
W: Write W, idle idle idle W) W3

(b) Function performed by each processor stage in successive clock cycles
Figure 8.4 Pipeline siall caused by a cache miss in F2. Eg: for Instruction Hazard

An alternative representation of the operation of a pipeline in the case of a
cache miss is shown in Figure b. This figure gives the function performed by
each pipeline stage in each clock cycle. Note that the Decode unit is idle in
cycles 3 through 5, the Execute unit is idle in cycles 4 through 6, and the
Write unit is idle in cycles 5 through 7. Such idle periods are called stalls.
They are also often referred to as bubbles in the pipeline.

Dr Ajay V G, Dept. of CSE,SVIT

Digital Design and Computer Organization (BCS302)

If instructions and data reside in the same cache unit, only one instruction can
proceed and the other instruction is delayed. Many processors use separate
instruction and data caches to avoid this delay.
An example of a structural hazard is shown in Figure. This figure shows how the
load instruction

Load X(R1),R2

» The memory address, X+[R1], is computed in stepE2 in cycle 4, then memory
access takes place in cycle 5. The operand read from memory is written into
register R2 in cycle 6. This means that the execution step of this instruction
takes two clock cycles (cycles 4 and 5). It causes the pipeline to stall for one
cycle, because both instructions I2 and I3 require access to the register file
in cycle 6.

» Even though the instructions and their data are all available, the pipeline is
stalled because one hardware resource, the register file, cannot handle two
operations at once. If the register file had two input ports, that is, if it allowed
two simultaneous write operations, the pipeline would not be stalled. In
general, structural hazards are avoided by providing sufficient hardware
resources on the processor chip.

——a= Time

Clock cycle 1 2 3 R 5 6 7

Instruction

1 F, D, E, W,

I, (Load) F, D, E, M, W,

I E D E; 41— = W

u 3 DL

I5 Fs Ds
Figure 8.5 Effect of a Load instruction on pipeline timing.

It is important to understand that pipelining does not result in
individual instructions being executed faster; rather, it is the
throughput that increases, where throughput is measured by the rate
at which instruction execution is completed.

The pipeline stalls, causes degradation in pipeline performance.

We need to identify all hazards that may cause the pipeline to stall
and to find ways to minimize their impact.

Dr Ajay V G, Dept. of CSE,SVIT

