Operating Systems (BCS303)

Module 3(a): Process Synchronization

6.1 Background
In this module developed a model of a system consisting of cooperating sequential processes or
threads, all running asynchronously and possibly sharing data. Illustrated this model with the producer-

consumer problem, which is representative of operating systems.

Let's return to our consideration of the bounded buffer. As we pointed out, our original solution allowed
at most BUFFER_SIZE - 1 items in the buffer at the same time. Suppose we want to modify the algorithm to
remedy this deficiency. One possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented every time we remove one item

from the buffer. The code for the producer process can be modified as follows:

while (true) {
/* produce an item in nextProduced */
while (counter == BUFFER_SIZE) ;
/* do nothing */
buffer[in] = nextProduced;
in=(in + 1) % BUFFER_SIZE ;
counter++;
}
The code for the consumer process can be modified as follows:
while (true) {
while (counter ==0) ;
[* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
[* consume the item in nextConsumed */
}
Although both the producer and consumer routines shown above are correct separately, they may not function
correctly when executed concurrently. As an illustration, suppose that the value of the variable counter is
currently 5 and that the producer and consumer processes execute the statements "counter++" and "counter--
" concurrently. Following the execution of these two statements, the value of the variable counter may be 4,

5, or 6! The only correct result, though, is counter == 5, which is generated correctly if the producer and
consumer execute separately.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Pagel

Operating Systems (BCS303)

The value of counter may be incorrect as follows,the statement™ counter++" may be implemented in machine

language (on a typical machine) as :

registery = counter
registery = registery + 1
counter= register;
where register; is one of the local CPU registers.
Similarly, the statement register> "counter--"is implemented as follows:
register, = counter
register, = register, — 1
counter= register;
where again register; is one of the local CPU registers.
Even though register; and register, may be the same physical register (an accumulator, say), remember that

the contents of this register will be saved and restored by the interrupt handler.

The concurrent execution of "counter++" and "counter--" is equivalent to a sequential execution in which the
lower-level statements presented previously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

To: producer execute registers =counter {registery = 5}

Ta: producer execute register: = register: + 1 {register; = 6}

To: consumer execute register, = counter {register, = 5}

Ts: consumer execute registerz = registerz - 1 {register2 = 4}

T4: producer execute counter= register; {counter = 6}

Ts: consumer execute counter = register, {counter = 4}
Notice that we have arrived at the incorrect state "counter == 4", indicating that four buffers are full, when, in
fact, five buffers are full. If we reversed the order of the statements at T4 and Ts, we would arrive at the

incorrect state "counter==6".

A situation like this, where several processes access and manipulate the same data concurrently and
the outcome of the execution depends on the particular order in which the access takes place, is called a race
condition.

» To guard against the race condition above, we need to ensure that only one process at a time

can be manipulating the variable counter. To make such a guarantee, we require that the

processes be synchronized in some way.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page2

Operating Systems (BCS303)
6.1 The Critical-Section Problem

Consider a system consisting of n processes {P0, P1, ..., Pn—1}. Each process has a segment of code, called a
critical section, in which the process may be changing common variables, updating a table, writing a file,
and so on. when one process is executing in its critical section, no other process is allowed to execute in its
critical section. The critical-section problem is to design a protocol that the processes can use to cooperate.
Each process must request permission to enter its critical section. The section of code implementing this
request is the entry section. The critical section may be followed by an exit section. The remaining code is

the remainder section. The general structure of a typical process Pi is shown in Figure.

do {

entry section

critical section
remainder section
} while (true);

General structure of a typical process P.

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can be
executing in their critical sections. No other process can enter the critical section until the process already
present inside it completes.

2. Progress. If no process is executing in its critical section and some processes wish to enter their critical
sections, then only those processes that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes are allowed
to enter their critical sections after a process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can make no assumption
concerning the relative of the n processes.

Two general approaches are used to handle critical sections in operating systems:

e Preemptive kernels: A preemptive kernel allows a process to be preempted while it is running in
kernel mode.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page3

Operating Systems (BCS303)

e Non-preemptive kernels: A non-preemptive kernel does not allow a process running in kernel mode

to be preempted; a kernel-mode process will run until it exits kernel mode, blocks, or voluntarily
yields control of the CPU.

6.3 Peterson’s Solution
A classic software-based solution to the critical-section problem known as Peterson’s solution. Because of
the way modern computer architectures perform basic machine-language instructions, such as load and store,
there are no guarantees that Peterson's solution will work correctly on such architectures. However, we
present the solution because it provides a good algorithmic description of solving the critical-section problem
and illustrates some of the complexities involved in designing software that addresses the requirements of
mutual exclusion, progress, and bounded waiting.
It Is two process solution.
e Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted
e The two processes share two variables:
int turn;
boolean flag[2] ;
The variable turn indicates whose turn it is to enter the critical section. The flag array is used to
indicate if a process is ready to enter the critical section. flag[i] = true implies that process Pi is ready.
e The structure of process Pi in Peterson’s solution:
do {

flagli]l = true;
turn = j;
while (flaglj] && turn == j);

critical section

|flag[i] = false;

remainder section
} while (true);
e |t proves that
1. Mutual exclusion is preserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

To prove property 1, we note that each Pj; enters its critical section only if either

flag [j] = = false or turn = = i. Also note that, if both processes can be executing in their critical sections at
the same time, then flag [0] = = flag [1] = =true. These two observations imply that Po and P1 could not
have successfully executed their while statements at about the same time, since the value of turn can be
either 0 or 1 but cannot be both. Hence, one of the processes -say, Pj -must have successfully executed the
while statement, whereas Pi; had to execute at least one additional statement ("turn= = j"). However, at that
time, flag [j] = = true and turn = = J, and this condition will persist as long as Pi is in its critical section; as

a result, mutual exclusion is preserved.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page4

Operating Systems (BCS303)

To prove properties 2 and 3, we note that a process Pi can be prevented from entering the

critical section only if it is stuck in the while loop with the condition flag [j] = = true and turn = = j; this
loop is the only one possible. If Pj is not ready to enter the critical section, then flag [j] = =false, and Pi can
enter its critical section. If Pj has set flag [j] to true and is also executing in its while statement, then either
turn = =1 orturn = =j. If turn = =i, then Pi will enter the critical section. If turn= = j, then Pj will enter the
critical section. However, once Pj exits its critical section, it will reset flag [j] to false, allowing Pi to enter
its critical section. If Pj resets flag [j] to true, it must also set turn to i. Thus, since Pi does not change the
value of the variable turn while executing the while statement, Pi will enter the critical section (progress)

after at most one entry by Pj (bounded waiting).

do {

]
acquire lock

critical section

release lock
remainder section
} while (TRUE);
Solution to the critical-section problem using locks

6.4 Synchronization Hardware
Software-based solutions such as Peterson’s are not guaranteed to work on modern computer architectures.
Simple hardware instructions can be used effectively in solving the critical-section problem. These solutions

are based on the locking —that is, protecting critical regions through the use of locks.

Race conditions are prevented by requiring that critical regions be protected by locks. That is, a process must
acquire a lock before entering a critical section; it releases the lock when it exits the critical section as shown

in fig above.

We explore several more solutions to the critical-section problem using techniques ranging from hardware

to software- based APIs available to application programmers.

The critical-section problem could be solved simply in a uniprocessor environment if we could
prevent interrupts from occurring while a shared variable was being modified. In this manner, we could be
sure that the current sequence of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be made to the shared variable. This
is often the approach taken by non-preemptive kernels. Unfortunately, this solution is not as feasible in a

multiprocessor environment. Disabling interrupts on a multiprocessor can be time consuming, as the message

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page5

Operating Systems (BCS303)

is passed to all the processors. This message passing delays entry into each critical section, and system

efficiency decreases.

Many modern computer systems therefore provide special hardware instructions that allow us either
to test and modify the content of a word or to swap the contents of two words atomically - that is, as one
uninterruptible unit. We can use these special instructions to solve the critical-section problem in a relatively
simple manner. Rather than discussing one specific instruction for one specific machine, we abstract the main
concepts behind these types of instructions by describing the TestAndSet () and Swap() instructions.

boolean TestAndSet(boolean *target)

{

boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.

do

{
while (TestAndSet(&lock)) ;

// do nothing //

critical section lock = FALSE;
/I remainder section//

} while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

The TestAndSet () instruction can be defined as shown in Figure 6.4. The important characteristic
of this instruction is that it is executed atomically. Thus, if two TestAndSet () instructions are executed
simultaneously (each on a different CPU), they will be executed sequentially in some arbitrary order.
If the machine supports the TestAndSet () instruction, then mutual exclusion can be implemented by
declaring a Boolean variable lock, initialized to false. The structure of process Pi is shown in Figure
6.5.

The Swap() instruction, in contrast to the TestAndSet () instruction, operates on the contents of two
words; it is defined as shown in Figure 6.6. Like the TestAndSet () instruction, it is executed atomically.
If the machine supports the Swap() instruction, then mutual exclusion can be provided as follows. A
global Boolean variable lock is declared and is initialized to false. In addition, each process has a local
Boolean variable key. The structure of process Pi is shown in Figure 6.7

void Swap(boolean *a, boolean *b)

{

boolean temp = *a;
*a *b; *b = temp;

}
Figure 6.6 The definition of the Swag Q instruction.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page 6

Operating Systems (BCS303)

do

{

key = TRUE;

while (key == TRUE)
Swap(&lock, &key);
/[critical section
lock = FALSE;

/I remainder section

} while (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap() instruction.

boolean waiting[n];

boolean lock;
These data structures are initialized to false. To prove that the mutual - exclusion requirement is met,
we note that process Pi can enter its critical section only if either waiting [i] = = false or key = = false.
The value of key can become false only if the TestAndSet () is executed. The first process to execute
the TestAndSet () will find key= = false; all others must wait. The variable waiting [i] can become
false only if another process leaves its critical section; only one waiting [i] is set to false, maintaining

the mutual-exclusion requirement.

do

{

waiting[i] = TRUE;
key = TRUE;

while (waiting[i] && key)
key= TestAndSet(&lock);
waiting[i] = FALSE;
// critical section
j=(@{+1)%n;
while ((j 1= 1) && 'waiting[j])
i=G+1)%n;
if j==1)
lock = FALSE;
else
waiting[j] = FALSE;
// remainder section
} while (TRUE) ;

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet ().

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page7

Operating Systems (BCS303)

To prove that the progress requirement is met, the arguments presented for mutual exclusion also
applied here, since a process exiting the critical section either sets lock to false or sets waiting[j] to false. Both
allow a process that is waiting to enter its critical section to proceed.

To prove that the bounded-waiting requirement is met, when a process leaves its critical section, it
scans the array waiting in the cyclic ordering (i+1,i+2,...,n 1,0, ..., i - 1). It designates the first process
in this ordering that is in the entry section (waiting[j] = = true) as the next one to enter the critical section. Any
process waiting to enter its critical section will thus do so within n - 1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-Set () instructions on
multiprocessors is not a trivial task.

6.5 Semaphores

The hardware-based solutions to the critical-section problem are complicated as well as generally

inaccessible to application programmers. So operating-systems designers build software tools to solve the
critical-section problem, and this synchronization tool called as Semaphore.

» Semaphore S is an integer variable.

» Two standard atomic operations modify S: wait() and signal() Originally called P() and V().

The definition of wait () is as follows:
wait(S)
{
while S<=0
// no-operation
S--;
}
The definition of signal() is as follows:
signal(S)
{

S++;

¥

All modifications to the integer value of the semaphore in the wait () and signal() operations must be
executed indivisibly. That is, when one process modifies the semaphore value, no other process can
simultaneously modify that same semaphore value. In addition, in the case of wait (S), the testing of the integer

value of S (S< 0), as well as its possible modification (S--), must be executed without interruption.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page 8

Operating Systems (BCS303)

6.5.1 Usage:
Semaphore classified into:
» Counting semaphore: Value can range over an unrestricted domain..

» Binary semaphore(Mutex locks): Value can range only between from 0 & 1. It
provides mutual exclusion.

Semaphore mutex; // initialized to 1
do {
wait (mutex);
/Il Critical Section
signal (mutex);
// remainder section
} while (TRUE);

Consider two concurrently running processes:
S1,
signal(synch);
In process P1, and the statements
wait(synch);
S2;
Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal(synch), which

is after statement S1 has been executed.

6.5.2 Implementation:

The disadvantage of the semaphore is busy waiting i.e While a process is in critical section, any other process
that tries to enter its critical section must loop continuously in the entry code. Busy waiting wastes CPU
cycles that some other process might be able to use productively. This type of semaphore is also called a

spin lock because the process spins while waiting for the lock.

Solution for Busy Waiting problem:

Modify the definition of the wait() and signal()operations as follows:

» When a process executes the wait() operation and finds that the semaphore value is not positive, it
must wait.

» Rather than engaging in busy waiting, the process can block itself.

» The block operation places a process into a waiting queue associated with the semaphore, and the
state of the process is switched to the waiting state.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page 9

Operating Systems (BCS303)

» Then control is transferred to the CPU scheduler, which selects another process to execute.
A process that is blocked, waiting on a semaphore S, should be restarted when some other process
executesa signal() operation. The process is restarted by a wakeup() operation, which changes the process
from the waiting state to the ready state. The process is then placed in the ready queue.

To implement semaphores under this definition, define a semaphore as follows:

typedef struct

{

int value;
struct process *list;
} semaphore;
Each semaphore has an integer value and a list of processes list. When a process must wait on a semaphore,
it is added to the list of processes. A signal() operation removes one process from the list of waiting processes
and awakens that process. Now, the wait() semaphore operation can be defined as:

wait(semaphore *S)

{
S->value--;
if (S->value < 0)
{

add this process to S->list;
block();
}

and the signal() semaphore operation can be defined as
signal(semaphore *S)

{
S->value++;
if (S->value <=0)
{
remove a process P from S->list;
wakeup(P);
}
b

The block() operation suspends the process that invokes it. The wakeup(P) operation resumes the execution
of a blocked process P.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page 10

Operating Systems (BCS303)

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where two or more
processes are waiting indefinitely for an event that can be caused by only one of the waiting processes, these
processes are said to be deadlocked.

Consider below example: a system consisting of two processes, PO and P1, each accessing two semaphores,
S and Q, set to the value 1:

Pa 15}
wait(8); wait(Ql);
wait(Q); wait(8);
signal(s); signal(Q);
signal(Q); signal (S);

Suppose that PO executes wait(S) and then P1 executes wait(Q).When PO executes wait(Q), it must wait until
P1 executes signal(Q). Similarly, when P1 executes wait(S), it must wait until PO executes signal(S). Since
these signal() operations cannot be executed, PO and P1 are deadlocked.

Another problem related to deadlocks is indefinite blocking or starvation.

6.6 Classic Problems of Synchronization
6.6.1 The Bounded-Buffer Problem:
e N buffers, each can hold one item
e Semaphore mutex initialized to the value 1
e Semaphore full initialized to the value 0

e Semaphore empty initialized to the value N

Code for producer is given below:
do {
/* produce an item in next_produced */

wait (empty);
wait(mutex);

/* add next_produced to the buffer */
signal (mutex);

signal (full);
} while (true);

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Pagel1l

Operating Systems (BCS303)

Code for consumer is given below:

do {
wait(full);
wait (mutex) ;

/* remove an item from buffer to next_consumed */

signal (mutex) ;
signal (empty) ;

/* consume the item in next_consumed x*/

} while (true);

6.6.2 The Readers—Writers Problem

A data set is shared among a number of concurrent processes
v Readers — only read the data set; they do not perform any updates

v" Writers— can both read and write

Problem — allow multiple readers to read at the same time

v" Only one single writer can access the shared data at the same time

Several variations of how readers and writers are treated — all involve priorities.

v' First variation — no reader kept waiting unless writer has permission to use
shared object.

v’ Second variation- Once writer is ready, it performs as soon as possible. In
other words, if a writer is waiting to access the object, no new readers may
start reading.

Shared Data

v Data set

v Semaphore mutex initialized to 1
v Semaphore wrt initialized to 1

v Integer readcount initialized to O

In the solution to the first readers-writers problem, the reader processes share the following data
structures:
semaphore mutex, wrt;
int readcount;
The mutex semaphore is used to ensure mutual exclusion when the variable readcount is updated. The
readcount variable keeps track of how many processes are currently reading the object. The semaphore

wrt functions as a mutual-exclusion semaphore for the writers. It is also used by the first or last reader

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page12

Operating Systems (BCS303)

that enters or exits the critical section. It is not used by readers who enter or exit while other readers are

in their critical sections.

The structure of writer process:
do

{
wait(wrt);
/[writing is performed
signal(wrt);
} while (TRUE);
Figure 6.12 The structure of a writer process.

The structure of reader process:

do |
wait{(mutex) ;
read_count++;
if (read_count == 1)
wait (rw_mutex) ;
signal (mutex) ;

/* reading is performed */

wait(mutex) ;

read_count——;

if (read_count == 0)
signal (rw_mutex) ;

signal (mutex) ;
} while (true);

The readers-writers problem and its solutions have been generalized to provide locks on some systems.
Acquiring a reader-writer lock requires specifying the mode of the lock either read or write access.

When a process wishes only to read shared data, it requests the reader-writer lock in read mode; a process

wishing to modify the shared data must request the lock in write mode. Multiple processes are permitted to

concurrently acquire a reader-writer lock in read mode, but only one process may acquire the lock for writing,

as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:
> Inapplications where it is easy to identify which processes only read shared data and which processes
only write shared data.
> In applications that have more readers than writers. This is because reader- writer locks generally
require more overhead to establish than semaphores or mutual-exclusion locks. The increased
concurrency of allowing multiple readers compensates for the overhead involved in setting up the

reader - writer lock.

Dept. of CSE (AI & ML), SVIT ~ Asst. Prof. Rekha Murthy ~ Page13

Operating Systems (BCS303

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers share a
circular table surrounded by five chairs, each belonging to one philosopher. In the center of the

table is a bowl of rice, and the table is laid with five single chopsticks.

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that
are between her and her left and right neighbors). A philosopher may pick up only one chopstick at a time.
When a hungry philosopher has both her chopsticks at the same time, she eats without releasing the
chopsticks. When she is finished eating, she puts down both chopsticks and starts thinking again.

It is a simple representation of the need to allocate several resources among several processes in adeadlock-
free and starvation-free manner.

Solution: One simple solution is to represent each chopstick with a semaphore. A philosopher tries to grab
a chopstick by executing a wait() operation on that semaphore. She releases her chopsticks by executing
the signal() operation on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of philosopher i is shown in Figure

do {
wait (chopstick[il);
wait (chopstick[(i+1) % 51);

/* eat for awhile */

signal (chopstick[il);
signal (chopstick[(i+1) % 51);

/* think for awhile x/

} while (true);

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Pagel14

Operating Systems (BCS303)

Several possible remedies to the deadlock problem are replaced by:
e Allow at most four philosophers to be sitting simultaneously at the table.
e Allow a philosopher to pick up her chopsticks only if both chopsticks are available.
e Use an asymmetric solution—that is, an odd-numbered philosopher picks up first her left chopstick
and then her right chopstick, whereas an even numbered philosopher picks up her right chopstick and

then her left chopstick.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy ~ Page15

Operating Systems (BCS303)

Module 3(b) : DEADLOCKS

A process requests resources, if the resources are not available at that time, the process enters a
waiting state. Sometimes, a waiting process is never again able to change state, because the
resources it has requested are held by other waiting processes. This situation is called a Deadlock.

SYSTEM MODEL

e A system consists of a finite number of resources to be distributed among a number of
competing processes. The resources are partitioned into several types, each consisting of
some number of identical instances. Memory space, CPU cycles, files, and 1/0 devices are
examples of resource types.

e A process must request a resource before using it and must release the resource after using
it. A process may request as many resources as it requires carrying out its designated task.
The number of resources requested may not exceed the total number of resources available
in the system.

Under the normal mode of operation, a process may utilize a resource in only the following
sequence:
1. Request: The process requests the resource. If the request cannot be granted
immediately, then the requesting process must wait until it can acquire the resource.
2. Use: The process can operate on the resource.
3. Release: The process releases the resource.

A set of processes is in a deadlocked state when every process in the set is waiting for an event
that can be caused only by another process in the set. The events with which we are mainly
concerned here are resource acquisition and release. The resources may be either physical
resources or logical resources

To illustrate a deadlocked state, consider a system with three CD RW drives.

Suppose each of three processes holds one of these CD RW drives. If each process now
requests another drive, the three processes will be in a deadlocked state.

Each is waiting for the event "CD RW is released,” which can be caused only by one of the
other waiting processes. This example illustrates a deadlock involving the same resource type.

Deadlocks may also involve different resource types. For example, consider a system with one printer and
one DVD drive. Suppose that process Pi is holding the DVD and process Pjis holding the printer. If P;

requests the printer and Pj requests the DVD drive, a deadlock occurs.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:1

Operating Systems (BCS303)

‘]'w !’H_,t&‘ P s

o IR

P o

C D DIreat

DEADLOCK CHARACTERIZATION

Necessory Conditiony

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that is,
only one process at a time can use the resource. If another process requests that resource,
the requesting process must be delayed until the resource has been released.

2. Hold and wait: A process must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process has completed its task.

4. Circular wait: A set {Po, Py, ..., Pn} of waiting processes must exist such that P, is waiting

for a resource held by P1, P1is waiting for a resource held by Po, ..., Pn.1 is waiting for a
resource held by Pnand Py is waiting for a resource held by Po.

Resowree~ Alotation Gropihh

Deadlocks can be described in terms of a directed graph called System Resource-Allocation
Graph

The graph consists of a set of vertices V and a set of edges E. The set of vertices V is
partitioned into two different types of nodes:

o P ={P1, P ...,Pn}, the set consisting of all the active processes in the system.

e R={Ry Ry, ..., Rm} the set consisting of all resource types in the system.

A directed edge from process Pi to resource type R; is denoted by Pi — R; it signifies that process

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:2

Operating Systems (BCS303)

Pi has requested an instance of resource type R;j and is currently waiting for that resource.
A directed edge from resource type Rjto process Piis denoted by R; — Pij it signifies that an
instance of resource type R;j has been allocated to process P;.

e A directed edge Pi — R;jis called a Request Edge.

e A directed edge Rj— Piis called an Assignment Edge.
Pictorially each process Pias a circle and each resource type R;as a rectangle. Since resource type
Rjmay have more than one instance, each instance is represented as a dot within the rectangle.
A request edge points to only the rectangle R;, whereas an assignment edge must also designate
one of the dots in the rectangle.

When process Pirequests an instance of resource type R;j,a request edge is inserted in the resource-
allocation graph. When this request can be fulfilled, the request edge is instantaneously
transformed to an assignment edge. When the process no longer needs access to the resource, it
releases the resource; as a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure depicts the following situation.

=R
(S E Y

The sets P, K and E:
o P ={P1, P2, P3}
¢ R={Ri1, Ry, R3, R4}
¢ E={PI—»R|,P2—>R3 RiI—P2,R2 > P2, R, > P;,R3 > P3}

Resource instances:
¢ One instance of resource type R1
e Two instances of resource type R
¢ One instance of resource type R3
e Three instances of resource type Rs

Process states:
e Process P; is holding an instance of resource type R2 and is waiting for an instance of
resource type Ru.
e Process P2 is holding an instance of Ry and an instance of R> and is waiting for an

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:3

Operating Systems (BCS303)

instance of Ra.
e Process P3 is holding an instance of R3

If the graph does contain a cycle, then a deadlock may exist.

e If each resource type has exactly gne instance, then a cycle implies that a deadlock has
occurred. If the cycle involves only a set of resource types, each of which has only a
single instance, then a deadlock has occurred. Each process involved in the cycle is
deadlocked.

e If each resource type has several instances, then a cycle does not necessarily imply that
a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a
sufficient condition for the existence of deadlock.

To illustrate this concept, the resource-allocation graph depicted in below figure:
Suppose that process P3 requests an instance of resource type R2. Since no resource instance is
currently available, a request edge P3 — R2 is added to the graph. At this point, two minimal
cycles exist in the system:

1. P1 »R1 - P2 - R3 - P3 - R2—-P1

2. P2 5 R3 - P3 > R2 —> P2

A,
Figure: Resource-allocation graph with a deadlock.

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is held
by process P3. Process P3 is waiting for either process P1 or process P2 to release resourceR2.
In addition, process P1 is waiting for process P2 to release resource R1.

Consider the resource-allocation graph in below Figure. In this example also have a cycle:
P1-R1—P3—R2—P1

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:4

Operating Systems (BCS303)

=
\K‘

Figure: Resource-allocation graph W|th a cycle but no deadlock

However, there is no deadlock. Observe that process P4 may release its instance of resource
type R2. That resource can then be allocated to P3, breaking the cycle.

METHODS FOR HANDLING DEADLOCKS

The deadlock problem can be handled in one of three ways:
1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a
deadlocked state.
2. Allow the system to enter a deadlocked state, detect it, and recover.
3. Ignore the problem altogether and pretend that deadlocks never occur in the system.

To ensure that deadlocks never occur, the system can use either deadlock prevention or a
deadlock-avoidance scheme.

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary
conditions cannot hold. These methods prevent deadlocks by constraining how requests for
resources can be made.

Deadlock-avoidance requires that the operating system be given in advance additional
information concerning which resources a process will request and use during its lifetime. With
this additional knowledge, it can decide for each request whether or not the process should wait.
To decide whether the current request can be satisfied or must be delayed, the system must
consider the resources currently available, the resources currently allocated to each process, and
the future requests and releases of each process

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may arise. In this environment, the system can provide an algorithm
that examines the state of the system to determine whether a deadlock has occurred and an
algorithm to recover from the deadlock.

In the absence of algorithms to detect and recover from deadlocks, then the system is in a
deadlock state yet has no way of recognizing what has happened. In this case, the undetected
deadlock will result in deterioration of the system's performance, because resources are being

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:5

Operating Systems (BCS303)

held by processes that cannot run and because more and more processes, as they make requests
for resources, will enter a deadlocked state. Eventually, the system will stop functioning and will
need to be restarted manually.

DEADLOACK PREVENTION

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot
hold.

Mutual Exclusion

e The mutual-exclusion condition must hold for non-sharable resources. Sharable resources,
do not require mutually exclusive access and thus cannot be involved in a deadlock.

e Ex: Read-only files are example of a sharable resource. If several processes attempt to
open a read-only file at the same time, they can be granted simultaneous access to the file.
A process never needs to wait for a sharable resource.

e Deadlocks cannot prevent by denying the mutual-exclusion condition, because some
resources are intrinsically non-sharable.

Hold and Wait
To ensure that the hold-and-wait condition never occurs in the system, then guarantee that,

whenever a process requests a resource, it does not hold any other resources.

e One protocol that can be used requires each process to request and be allocated all its
resources before it begins execution.

e Another protocol allows a process to request resources only when it has none. A process
may request some resources and use them. Before it can request any additional resources,
it must release all the resources that it is currently allocated.

Ex:

e Consider a process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If all resources must be requested at the beginning of
the process, then the process must initially request the DVD drive, disk file, and printer.
It will hold the printer for its entire execution, even though it needs the printer only at the
end.

e The second method allows the process to request initially only the DVD drive and disk
file. It copies from the DVD drive to the disk and then releases both the DVD drive and
the disk file. The process must then again request the disk file and the printer. After
copying the disk file to the printer, it releases these two resources and terminates.

The two main disadvantages of these protocols:
1. Resource utilization may be low, since resources may be allocated but unused for a long

period.
2. Starvation is possible.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:6

Operating Systems (BCS303)

No Preemption
The third necessary condition for deadlocks is that there be no preemption of resources that have
already been allocated.

To ensure that this condition does not hold, the following protocols can be used:

e |If a process is holding some resources and requests another resource that cannot be
immediately allocated to it, then all resources the process is currently holding are
preempted.

e The preempted resources are added to the list of resources for which the process is waiting.
The process will be restarted only when it can regain its old resources, as wellas the new
ones that it is requesting.

If a process requests some resources, first check whether they are available. If they are, allocate
them.

If they are not available, check whether they are allocated to some other process that is waiting
for additional resources. If so, preempt the desired resources from the waiting process and
allocate them to the requesting process.

If the resources are neither available nor held by a waiting process, the requesting process must
wait. While it is waiting, some of its resources may be preempted, but only if another process
requests them.

A process can be restarted only when it is allocated the new resources it is requesting and recovers
any resources that were preempted while it was waiting.

Circular Wait
One way to ensure that this condition never holds is to impose a total ordering of all resource
types and to require that each process requests resources in an increasing order of enumeration.

To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer
number to each resource type, which allows to compare two resources and to determinewhether
one precedes another in ordering. Formally, it defined as a one-to-one function

F: R ->N, where N is the set of natural numbers.

Example: if the set of resource types R includes tape drives, disk drives, and printers, then the
function F might be defined as follows:

F (tape drive) =1

F (disk drive) =5

F (printer) = 12

Now consider the following protocol to prevent deadlocks. Each process can request resources
only in an increasing order of enumeration. That is, a process can initially request any number of
instances of a resource type -Ri. After that, the process can request instances of resource typeR;
if and only if F(R;) > F(R)).

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:7

Operating Systems (BCS303)

DEADLOCK AVOIDANCE

e To avoid deadlocks an additional information is required about how resources are to be
requested. With the knowledge of the complete sequence of requests and releases for each
process, the system can decide for each request whether or not the process should wait in
order to avoid a possible future deadlock

e Each request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the future
requests and releases of each process.

e The various algorithms that use this approach differ in the amount and type of information
required. The simplest model requires that each process declare the maximum number of
resources of each type that it may need. Given this a priori information, it is possible to
construct an algorithm that ensures that the system will never enter a deadlocked state.
Such an algorithm defines the deadlock-avoidance approach.

Safe State

e Safe state: A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. A system is in a safe state only if
there exists a safe sequence.

o Safe sequence: A sequence of processes <P1, P2, ..., Pn> is a safe sequence for the current
allocation state if, for each Pi, the resource requests that Pi can still make can be satisfied
by the currently available resources plus the resources held by all Pj, with j <i.

In this situation, if the resources that Pi needs are not immediately available, then Pi can wait
until all Pj have finished. When they have finished, Pi can obtain all of its needed resources,
complete its designated task, return its allocated resources, and terminate. When Pi terminates,
Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system state
is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all
unsafe states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As long
as the state is safe, the operating system can avoid unsafe states

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:8

Operating Systems (BCS303)

unsafe

deadlock

ﬂ

Figure: Safe, unsafe, and deadlocked state spaces.

Resource-Allocation-Graph Algorithm

e If aresource-allocation system has only one instance of each resource type, then a
variant of the resource-allocation graph is used for deadlock avoidance.

¢ In addition to the request and assignment edges, a new type of edge is introduced, called
a claim edge.

e A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in
the future. This edge resembles a request edge in direction but is represented in the
graph by a dashed line.

e When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a request
edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is reconverted to
a claim edge Pi->R;j.

2}
i / >N
{ 1) P,
L RS
\‘ R
R

Figure: Resource-allocation graph for deadlock avoidance.

Note that the resources must be claimed a priori in the system. That is, before process Pi starts
executing, all its claim edges must already appear in the resource-allocation graph.

We can relax this condition by allowing a claim edge Pi ->Rj to be added to the graph only if
all the edges associated with process Pi are claim edges.

Now suppose that process Pi requests resource Rj. The request can be granted only if
converting the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the
formation of a cycle in the resource-allocation graph.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:9

Operating Systems (BCS303)

There is need to check for safety by using a cycle-detection algorithm. An algorithm for detecting
a cycle in this graph requires an order of n? operations, where n is the number of processes in the
system.

e If no cycle exists, then the allocation of the resource will leave the system in a safe state.

e If acycle is found, then the allocation will put the system in an unsafe state. In that case,
process Pi will have to wait for its requests to be satisfied.

To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose that
P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action will
create a cycle in the graph.
A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1,
then a deadlock will occur.

R

R,
Figure: An unsafe state in a resource-allocation graph

Banker's Algorithm

The Banker’s algorithm is applicable to a resource allocation system with multiple instances of
each resource type.

e When a new process enters the system, it must declare the maximum number of instances
of each resource type that it may need. This number may not exceed the total number of
resources in the system.

e When a user requests a set of resources, the system must determine whether the allocation
of these resources will leave the system in a safe state. If it will, the resources are allocated,;
otherwise, the process must wait until some other process releases enough resources.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:10

Operating Systems (BCS303)

To implement the banker's algorithm the following data structures are used.

Let n = number of processes, and m = number of resources types

Available: A vector of length m indicates the number of available resources of each type. If
available [j] = k, there are k instances of resource type Rj available.

Max: An n x m matrix defines the maximum demand of each process. If Max [i,j] = k, then
process Pi may request at most k instances of resource type Rj

Allocation: An n x m matrix defines the number of resources of each type currently allocated to
each process. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i,j] = k,
then Pi may need k more instances of Rj to complete its task.

Need [i,j] = Max([i,j] — Allocation [i,j]

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be
described as follows:

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available
Finish [i] = false fori=0,1,...,n- 1

2. Find an index i such that both:
(@) Finish[i] = false
(b) Needi< Work
If no such i exists, go to step 4

3. Work = Work + Allocation;
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

This algorithm may require an order of m x n? operations to determine whether a state is safe.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:11

Operating Systems (BCS303)

Resource-Request Algorithm

The algorithm for determining whether requests can be safely granted.

Let Requesti be the request vector for process Pi. If Requesti [j] == Kk, then process Pi wants k
instances of resource type R;. When a request for resources is made by process Pi, the following
actions are taken:

1. If Requesti<Needigo to step 2. Otherwise, raise error condition, since process has exceeded
its maximum claim

2. If Requesti<Available, go to step 3. Otherwise P; must wait, since resources are not available

3. Have the system pretend to allocate requested resources to Pi by modifying the state as
follows:

Available = Available — Request;

Allocationi= Allocation; + Request;;

Needi=Need; — Request;;

If safe = the resources are allocated to Pi
If unsafe = Pi must wait, and the old resource-allocation state is restored

Example

Consider a system with five processes P, through P4 and three resource types A, B, and C.
Resource type A has ten instances, resource type B has five instances, and resource type C has
seven instances. Suppose that, at time Tothe following snapshot of the system has been taken:

Allocation Max Available
ABC ABC ABC
= 010 753 332
P, 200 322
P> 302 902
P 211 222
P, o002 433

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:12

Operating Systems (BCS303)

The content of the matrix Need is defined to be Max - Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

The system is currently in a safe state. Indeed, the sequence <P, Ps, P4, P2, Po> satisfies the
safety criteria.

Suppose now that process P1 requests one additional instance of resource type A and two
instances of resource type C, so Request: = (1,0,2). Decide whether this request can be
immediately granted.

Check that Request < Available
(1,0,2) £(3,3,2) = true

Then pretend that this request has been fulfilled, and the following new state is arrived.

Allocation Need Available

ABC ABC ABC
P, 010 743 230
P, 302 020
P, 302 600
Py 211 011
Py 002 431

Executing safety algorithm shows that sequence <P1, P3, P4, Po, P2> satisfies safety
requirement.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:13

Operating Systems (BCS303)

DEADLOCK DETECTION

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may occur. In this environment, the system may provide:

e An algorithm that examines the state of the system to determine whether a deadlock has
occurred

e An algorithm to recover from the deadlock

Single Instance of Each Resource Type

e If all resources have only a single instance, then define a deadlock detection algorithm
that uses a variant of the resource-allocation graph, called a wait-for graph.

e This graph is obtained from the resource-allocation graph by removing the resource nodes
and collapsing the appropriate edges.

e An edge from Pjto Pjin a wait-for graph implies that process Piis waiting for process P;j
to release a resource that Pineeds. An edge Pi — Pjexists in a wait-for graph if and only if the

corresponding resource allocation graph contains two edges Pi —Rq and Rq—P; for some
resource Ry.

Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph is
presented.

I l

(a) {b)

Figure: (a) Resource-allocation graph. (b) Corresponding wait-for graph.

e A deadlock exists in the system if and only if the wait-for graph contains a cycle. To
detect deadlocks, the system needs to maintain the wait-for graph and periodically
invoke an algorithm that searches for a cycle in the graph.

e An algorithm to detect a cycle in a graph requires an order of n? operations, where n is
the number of vertices in the graph.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:14

Operating Systems (BCS303)

Several Instances of a Resource Type

A deadlock detection algorithm that is applicable to several instances of a resource type. The
algorithm employs several time-varying data structures that are similar to those used in the
banker's algorithm.

e Available: A vector of length m indicates the number of available resources of each
type.

e Allocation: Ann x m matrix defines the number of resources of each type currently
allocated to each process.

e Request: An n x m matrix indicates the current request of each process. If Request[i][j]
equals k, then process P; is requesting k more instances of resource type Rj.

Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively Initialize:
(a) Work = Available
(b) Fori=1,2, ..., n, if Allocationi= 0, then Finish[i] = false;
otherwise, Finish[i] = true

2. Find an index isuch that both:
(a) Finish[i] == false
(b)Requesti<Work

If no such i exists, go to step 4
3. Work = Work + Allocation;

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 <i<n, then the system is in deadlock state. Moreover, if
Finish[i] == false, then P;j is deadlocked

Algorithm requires an order of O(m x n? operations to detect whether the system is in
deadlocked state
Example of Detection Algorithm

Consider a system with five processes Po through P4 and three resource types A, B, and C.
Resource type A has seven instances, resource type B has two instances, and resource type C
has six instances. Suppose that, at time To, the following resource-allocation state:

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:15

Operating Systems (BCS303)

Allocation Request Available

ABC ABC ABC
Po, 010 000 000
P, 200 202
P, 303 000
Py 211 100
P, 002 002

After executing the algorithm, Sequence <Po, P2, P3, P1, Ps+> will result in Finish[i] = true for
all i

Suppose now that process P2 makes one additional request for an instance of type C. The
Request matrix is modified as follows:

Request

ABC
P, 000
P, 202
P, 001
P, 100
P, 002

The system is now deadlocked. Although we can reclaim the resources held by process Po, the
number of available resources is not sufficient to fulfill the requests of the other processes.
Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

The detection algorithm can be invoked on two factors:
1. How often is a deadlock likely to occur?
2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Resources allocated to deadlocked processes will be idle until the deadlock can be broken.

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and
so we would not be able to tell which of the many deadlocked processes “caused” the deadlock.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:16

Operating Systems (BCS303)

RECOVERY FROM DEADLOCK

The system recovers from the deadlock automatically. There are two options for breaking a
deadlock one is simply to abort one or more processes to break the circular wait. The other is to
preempt some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the

system reclaims all resources allocated to the terminated processes.

1. Abort all deadlocked processes: This method clearly will break the deadlock cycle, but
at great expense; the deadlocked processes may have computed for a long time, and the
results of these partial computations must be discarded and probably will have to be
recomputed later.

2. Abort one process at a time until the deadlock cycle is eliminated: This method
incurs considerable overhead, since after each process is aborted, a deadlock-detection

algorithm must be invoked to determine whether any processes are still deadlocked.

If the partial termination method is used, then we must determine which deadlocked process (or

processes) should be terminated. Many factors may affect which process is chosen, including:

1. What the priority of the process is
2. How long the process has computed and how much longer the process will compute
before completing its designated task

How many and what types of resources the process has used.

How many more resources the process needs in order to complete

o b~ w

How many processes will need to be terminated?

6. Whether the process is interactive or batch
Resource Preemption
To eliminate deadlocks using resource preemption, we successively preempt some resources

from processes and give these resources to other processes until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to be addressed:

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:17

Operating Systems (BCS303)

1. Selecting a victim. Which resources and which processes are to be preempted? As in
process termination, we must determine the order of preemption to minimize cost. Cost
factors may include such parameters as the number of resources a deadlocked process is
holding and the amount of time the process has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done with that process?
Clearly, it cannot continue with its normal execution; it is missing some neededresource.
We must roll back the process to some safe state and restart it from that state. Since it is
difficult to determine what a safe state is, the simplest solution is a total rollback: abort the
process and then restart it.

3. Starvation. How do we ensure that starvation will not occur? That is, how can we
guarantee that resources will not always be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may happen that the
same process is always picked as a victim. As a result, this process never completes its
designated task, a starvation situation that must be dealt with in any practical system. It must
ensure that a process can be picked as a victim" only a (small) finite number of times. The

most common solution is to include the number of rollbacks in the cost factor.

Dept. of CSE (AI & ML), SVIT Asst. Prof. Rekha Murthy Page:18

