
1. Define deadlock. What are the 4 necessary conditions for deadlock 
to occur?  
A deadlock is a situation in a multiprogramming or multitasking environment where two or 
more processes are unable to proceed because each is waiting for the other to release a 
resource or perform an action. In a deadlock, the processes are stuck in a circular waiting 
pattern, resulting in an indefinite halt in their execution.


Four Necessary Conditions for Deadlock: 

For deadlock to occur, the following four necessary conditions must hold simultaneously:

	 

1. Mutual Exclusion: 
	 •	 A resource is assigned to only one process at a time, and no other process can 
access it while it is held by another. For example, printers or files are typically mutually 
exclusive.

	 

2. Hold and Wait: 
	 •	 A process that is holding at least one resource is waiting for additional 
resources that are currently held by other processes. This condition leads to a situation 
where processes hold resources and wait for others to release the resources they need.

	 

3. No Preemption: 
	 •	 Resources cannot be forcibly taken from a process holding them. A process can 
only release a resource voluntarily, which means no process can preemptively seize a 
resource from another.

	 


4. Circular Wait: 
	 •	 A set of processes are waiting for each other in a circular chain. For instance, 
process P1 is waiting for a resource held by P2, P2 is waiting for a resource held by P3, and 
P3 is waiting for a resource held by P1, forming a closed loop. 



2. Explain different methods to recover from deadlocks.  

To recover from deadlocks, there are a few methods that can be employed, each with 
its own set of advantages and disadvantages. The recovery process focuses on 
breaking the deadlock and resuming normal execution.


1. Process Termination 
	 

• Definition: One or more processes involved in the deadlock are terminated to 
break the cycle.

	 

• Methods: 
	 • Terminating All Deadlocked Processes: All processes involved in the 
deadlock are terminated, ensuring the system is freed from the deadlock situation.

	 • Terminating One Process at a Time: In this method, processes are 
terminated one by one until the deadlock cycle is broken. This approach is less 
drastic.

	 •	 Advantages: 
	 	 •	 Simple and effective.

	 	 •	 Frees up resources immediately.

	 •.       Disadvantages:

	 •	 Can cause performance issues if a large number of processes need to be 
terminated.


2. Resource Preemption 
	 

• Definition: Resources held by deadlocked processes are taken away 
(preempted) and allocated to other processes.


 
Steps:

	 •	 Choose a victim process to preempt its resources.

	 •	 Rollback the preempted process to a safe state.

	 •	 Retry allocating resources.

	 


Advantages:

	 •	 Allows the system to recover without killing processes.

	 •	 Can be implemented dynamically.

	 


Disadvantages:

	 •	 The process that is preempted may lose all progress made, resulting in 
additional overhead for rolling back the process to a safe state.

	 •	 May lead to starvation of some processes.




3. Process Rollback 
	 

• Definition: A process that is part of the deadlock is rolled back to a point before 
it entered the deadlock state, so it can release resources and try again.


• Steps: 
	 •	 Determine which process is causing the deadlock.

	 •	 Rollback the process to a previous safe state (checkpoint).

	 •	 Allow the process to resume from the checkpoint with fresh resource 
requests.


• Advantages: 
	 •	 Minimal disruption to the system.

	 •	 Allows processes to continue execution after being rolled back.


• Disadvantages: 
	 •	 High overhead due to maintaining checkpoints and the cost of rolling 
back.

	 •	 There is still a risk of deadlock recurrence after rollback.


4. Abort and Restart 
 

• Definition: The system aborts one or more processes to resolve the deadlock 
and restarts them from the beginning or a checkpoint.


 
• Method: The system can abort and restart processes that are deadlocked, 
either from the beginning or from a previously saved state.

	 

• Advantages: 
	 •	 Simple approach for breaking deadlocks.

	 •	 Can be effective in non-time-critical systems.

	 

• Disadvantages: 
	 •	 High cost of restarting processes.

	 •	 Potential loss of valuable data or progress.




3. What is a resource allocation graph? Consider an example to 
explain how it is very useful in describing a deadly embrace. 

A Resource Allocation Graph (RAG) is a directed graph used to represent the 
allocation of resources to processes and the requests made by processes for 
resources. It is a powerful tool to detect and visualize potential deadlocks in a system. 
The graph consists of two types of nodes:	 


	 1. Process Nodes (P): Represent processes in the system.

	 

	 2. Resource Nodes (R): Represent resources in the system.


Edges in the Graph: 
	 


1. Request Edge: From a process node to a resource node (P →  R). This 
edge indicates that the process is requesting the resource.

	 

       2. Assignment Edge: From a resource node to a process node (R → P). This 
edge indicates that the resource is assigned to the process.


Deadly Embrace (Deadlock) in a RAG: 

A “deadly embrace” refers to a deadlock situation where processes are waiting for 
resources in a circular fashion, causing them to be stuck indefinitely. In the RAG, this 
corresponds to a cycle in the graph.


Deadlock Detection Using RAG: 
	 •	 If there is a cycle in the graph, it indicates a deadlock situation.

	 •	 Processes in the cycle are each holding resources that others in the cycle 
need, and none can proceed because they are all waiting for a resource held by 
another process in the cycle.


Example to Explain Deadly Embrace (Deadlock): 

Let’s consider a system with two processes P_1 and P_2 and two resources R_1 and 
R_2.

Initial Allocation: 
	 •	 Process P_1 holds resource R_1.

	 •	 Process P_2 holds resource R_2.

Request: 
	 •	 Process P_1 requests R_2.

	 •	 Process P_2 requests R_1.




Resource Allocation Graph (RAG) Representation: 

P1 → R2            R1 → P2 
      ↑                        ↑ 
       |______________| 

Explanation:

	 • Request Edge: 
	 •	 P_1 → R_2: Process P_1 requests R_2.

	 •	 P_2 → R_1: Process P_2 requests R_1.

	 • Assignment Edge:

	 •	 R_1 → P_1: Resource R_1 is assigned to P_1.

	 •	 R_2 → P_2: Resource R_2 is assigned to P_2.


Deadlock/Deadly Embrace (Cycle in RAG): 
	 

• The graph contains a cycle: P_1 → R_2 → P_2 → R_1 → P_1.

	 

•	 This cycle indicates a deadlock situation, as both P_1 and P_2 are holding one 
resource and are waiting for the other resource, which is held by the other process.


Usefulness of the Resource Allocation Graph (RAG) in Deadlock Detection: 
	 

•	 The RAG provides a clear, visual representation of resource allocation and 
process requests.

	 

• Cycle Detection: By checking the graph for cycles, you can easily identify 
deadlock conditions. If there is a cycle, it signifies a deadly embrace where the 
involved processes are stuck waiting for each other.

	 

• Clear Representation: The RAG helps in visually identifying exactly which 
processes are involved in a deadlock and which resources are causing the issue.


Conclusion: 

The Resource Allocation Graph (RAG) is an effective tool for detecting deadlocks in 
systems. By visualizing resource allocation and requests, it provides a clear method 
for identifying circular waits, or deadly embraces, between processes, helping in the 
process of deadlock detection and recovery.




4. What is a semaphore? 

A semaphore is a synchronization tool used to manage concurrent processes and 
ensure that critical sections are accessed by only one process at a time. Semaphores 
are commonly used to solve synchronization problems in multi-threaded or multi-
process systems.

	 • Definition: A semaphore is a variable or abstract data type that is used to 
control access to a shared resource by multiple processes in a concurrent system.


• Types of Semaphores: 
	 

1. Binary Semaphore (Mutex): Takes values 0 or 1, primarily used for mutual 
exclusion (locking mechanism).


2. Counting Semaphore: Can take any non-negative integer value. It is used to 
manage a pool of resources (e.g., number of printers available).

	 

	 	 	 • Operations:

	 

1. Wait (P operation): Decreases the semaphore value. If the value is greater than 
0, the process proceeds; if the value is 0, the process is blocked until the value 
becomes positive.

	 

2. Signal (V operation): Increases the semaphore value and unblocks a waiting 
process, if any.


4a :- State a Dining Philosopher problem gives a solution using 
semaphore.  

Dining Philosophers Problem 

The Dining Philosophers Problem is a classic synchronization and concurrency 
problem. It involves five philosophers sitting at a round table, thinking and eating. 
They need two resources (forks) to eat, but there is a constraint: each philosopher 
must have two forks to eat, and they can only pick up one fork at a time.


Problem Statement: 
	 •	 There are 5 philosophers sitting at a table.

	 •	 Each philosopher has a bowl of spaghetti, but they need two forks to eat.

	 •	 The philosophers can pick up the fork on their left or right, but they must 
avoid deadlock (e.g., no philosopher should be stuck holding one fork and waiting 
forever for the other fork).

	 •	 The goal is to create a solution where each philosopher can eat without 
causing deadlock or starvation.




Solution to Dining Philosophers Problem Using Semaphores 

To avoid deadlock and ensure that no philosopher starves, we can use semaphores for 
controlling the access to the forks.


Problem Setup: 
	 •	 5 philosophers sit at a round table.

	 •	 Each philosopher needs two forks (one to their left and one to their right) to eat.

	 •	 Forks are shared resources between philosophers.

	 •	 The goal is to avoid deadlock and ensure all philosophers can eat without 
starvation.


Algorithm Using Semaphores: 
	 1. Initialization:

	 •	 Initialize semaphore fork[i] = 1 for each fork i (1 means the fork is available).

	 •	 Initialize semaphore mutex = 1 for mutual exclusion.

	 2. Philosopher Process:

	 •	 Each philosopher follows this cycle:

Do { 
    Think(); 
    Wait(fork[i]);  // Pick up left fork 
    Wait(fork[(i+1) % 5]);  // Pick up right fork 
    Eat();  // Start eating 
    Signal(fork[i]);  // Put down left fork 
    Signal(fork[(i+1) % 5]);  // Put down right fork 
} while (true); 

3. Explanation:

	 

•	 Each philosopher waits for both the left and right forks to become available using 
Wait() on the corresponding semaphores.

	 

•	 Once both forks are acquired, the philosopher eats.

	 

•	 After eating, the philosopher releases the forks using Signal(), making them available 
for other philosophers.

•	 This process repeats continuously.

	 


4. Deadlock Avoidance: 
	 

•	 By using semaphores, we ensure that no two philosophers can pick up the same fork 
simultaneously, avoiding conflicts and deadlocks.

	 

•	 Each philosopher acquires and releases forks in a sequential manner, ensuring that the 
resources are properly shared.




5 Explain readers writers processes using semaphores  
The Readers-Writers problem is a classic synchronization problem where there are multiple 
processes accessing a shared resource, such as a database. There are two types of 
processes:

	 • Readers: These processes only read the shared resource.

	 

• Writers: These processes modify the shared resource.


The challenge is to design a system where: 
	 •	 Multiple readers can access the shared resource simultaneously, as long as 
there are no writers.

	 •	 A writer must have exclusive access to the resource, meaning no readers or 
other writers can access it at the same time.


The problem has two main variations: 
1.	 First readers-writers problem (no starvation for readers): Prioritize readers to 

prevent them from starving when there are continuous writers.

	 2. Second readers-writers problem (no starvation for writers): Prioritize writers 
to prevent them from starving when there are continuous readers.


Here, we’ll focus on a general solution using semaphores. 

Solution Using Semaphores (General Approach) 

Variables used : 
	 • mutex: A binary semaphore for mutual exclusion to protect the critical section 
where the number of readers is updated.


• write: A semaphore to ensure exclusive access for writers.

• read_count: A variable to keep track of the number of readers currently 

accessing the resource.


Semaphores Initialization: 
	 •	 mutex = 1 (binary semaphore)

	 •	 write = 1 (binary semaphore)

	 •	 read_count = 0 (initialized to 0)


Algorithm for Writer Process: 

Do { 
    Wait(write);        // Enter critical section to get exclusive access 
     
    // Writing to the shared resource 
    Write();           // The writer performs the write operation 
     
    Signal(write);     // Release the write semaphore after writing 
} while (true); 



Algorithm for Reader Process: 

Do { 
    Wait(mutex);        // Enter critical section to update read_count 
    read_count = read_count + 1; 
     
    if (read_count == 1) { 
        Wait(write);    // Block writers if the first reader enters 
    } 

    Signal(mutex);     // Exit critical section 

    // Reading the shared resource 
    Read();            // The reader performs the read operation 

    Wait(mutex);       // Enter critical section to update read_count 
    read_count = read_count - 1; 
     
    if (read_count == 0) { 
        Signal(write);  // Allow writers if there are no readers left 
    } 

    Signal(mutex);     // Exit critical section 
} while (true);


Explanation of the Solution: 
 

1. Reader Process: 
• Entering: A reader first enters a critical section protected by the mutex 

semaphore to update read_count.

	 • Reading: Once inside the critical section, the reader performs the read 
operation.

	 • Exiting: After reading, the reader decreases the read_count and, if it is the last 
reader (read_count == 0), it signals the writer semaphore, allowing writers to access the 
resource.


 
2. Writer Process: 

• Exclusive Access: The writer first waits on the write semaphore to ensure 
exclusive access to the resource (i.e., no readers or other writers can access it while the 
writer is working).


• Writing: Once access is granted, the writer performs the write operation.




• Exiting: After writing, the writer signals the write semaphore to release the 
resource, allowing other processes to use it.


Key Points: 
• Mutual Exclusion for Writers: Only one writer can access the resource at a 

time, which is ensured by the write semaphore.

 

         • Concurrent Readers: Multiple readers can access the resource simultaneously, 
as long as there are no writers. This is managed by the read_count variable and the mutex 
semaphore.

	 

          • Avoiding Starvation:

	 •	 The first variation prioritizes readers, ensuring that as long as there are readers, 
writers are blocked.

	 •	 The second variation prioritizes writers, ensuring that writers are not blocked 
indefinitely when there are readers.


Conclusion: 

The solution using semaphores effectively synchronizes access to the shared resource by 
readers and writers. It ensures that:

	 •	 Multiple readers can read concurrently.

	 

	 •	 Writers get exclusive access when they need to modify the resource.


	 •	 Starvation is avoided either for readers or writers, depending on the specific 
implementation (first or second variation). 



6. Discuss briefly about semaphores in synchronisation  
A semaphore is a synchronization tool used in concurrent programming to manage access 
to shared resources and coordinate the execution of multiple processes or threads. 
Semaphores help prevent race conditions and ensure that resources are used efficiently in 
multi-threaded or multi-process systems.


Key Concepts:

	 1. Semaphore Definition:

	 •	 A semaphore is an integer variable used to control access to shared resources 
by multiple processes in a concurrent system.

	 •	 It acts as a signaling mechanism between processes to prevent conflicts while 
accessing shared resources.


                 2. Types of Semaphores: 
	 

• Binary Semaphore (Mutex): This type of semaphore can only take two values (0 or 1). 
It is used for mutual exclusion, where only one process can access the critical section at a 
time.

	 

• Counting Semaphore: This type can take any non-negative integer value. It is used 
when there are multiple instances of a resource, such as a pool of printers or buffer slots.

	 

	 	 3. Operations on Semaphores: 
	 

• Wait (P operation): This operation decreases the semaphore value. If the value is 
greater than 0, the process proceeds. If the value is 0, the process is blocked (waits) until the 
semaphore value becomes positive.

	 • Syntax: wait(semaphore)

	 • Signal (V operation): This operation increases the semaphore value. If any 
process is waiting, it will be unblocked and allowed to proceed.

	 • Syntax: signal(semaphore)

	  

4. Usage in Synchronization: 
	 

•	 Semaphores are primarily used to synchronize processes, ensuring that they do not 
interfere with each other when accessing shared resources.

	 

•	 They are essential in situations where multiple processes or threads must share 
resources like printers, files, or memory.


 
• Mutual Exclusion: Semaphores can prevent more than one process from entering a 
critical section at a time (ensuring data consistency).

	 

• Process Synchronization: Semaphores can be used to ensure that processes 
execute in a specific order or at the right time.




Examples of Semaphore Use: 
1. Mutual Exclusion (Mutex):

	 •	 When multiple processes access shared data, a binary semaphore (mutex) is 
used to enforce mutual exclusion.

	 •	 Only one process can enter the critical section at a time, preventing data 
corruption.

	 

2. Reader-Writer Problem: 
	 •	 Semaphores are used to manage concurrent access to a shared resource where 
multiple readers can read simultaneously, but writers need exclusive access.


3. Producer-Consumer Problem: 
	 •	 In this case, semaphores are used to manage the buffer, where a producer 
produces items and a consumer consumes them. A counting semaphore is used to track the 
number of items in the buffer.


Advantages of Semaphores: 
 

• Efficient Synchronization: They help synchronize access to shared resources, 
ensuring that processes do not interfere with each other. 
	 

• Prevention of Race Conditions: By controlling access to critical sections, 
semaphores avoid race conditions where multiple processes access shared data 
simultaneously.

	 

• Deadlock Avoidance: Proper use of semaphores can prevent deadlocks (although it 
requires careful management of resource allocation).


Limitations:

	 

• Complexity: Using semaphores correctly requires careful attention to avoid issues like 
deadlock, starvation, and priority inversion.


• Resource Intensive: In large systems, managing semaphores can be resource-
intensive and may lead to performance degradation if not implemented efficiently.


Conclusion: 

Semaphores are a powerful synchronization tool that allows for proper coordination between 
concurrent processes or threads. They are widely used in operating systems and multi-
threaded programming to ensure safe and efficient access to shared resources. 



7. With a suitable diagram explain internal and external fragmentation 
problem  

In memory management, fragmentation refers to the inefficient use of memory. It 
occurs when memory is allocated but not fully utilized, leading to wasted space. 
There are two types of fragmentation:

	 1.	 Internal Fragmentation

	 2.	 External Fragmentation


Let’s discuss both types with suitable diagrams.


1. Internal Fragmentation 

Definition:

Internal fragmentation occurs when memory is allocated to a process but not fully 
used. The allocated memory block may be larger than the required memory size, 
leading to unused space inside the block.

	 

• Cause: This typically happens in systems using fixed-sized memory allocation, 
where processes are assigned blocks of memory in predefined sizes.

	 

• Example: If a process requests 18 KB of memory but the system allocates a 20 
KB block, the remaining 2 KB inside the block is wasted.


Diagram for Internal Fragmentation: 

Memory Block 1: [ 18 KB | 2 KB unused ]  --> Internal Fragmentation (2 KB) 
Memory Block 2: [ 15 KB | 5 KB unused ]  --> Internal Fragmentation (5 KB) 

In the diagram: 
	 •	 The process requests 18 KB but is allocated a 20 KB block (internal 
fragmentation of 2 KB).

	 •	 Similarly, another block of 20 KB is allocated for a 15 KB request, leaving 
5 KB unused.


Key Points about Internal Fragmentation: 
	 •	 Wasted space within an allocated memory block.

	 •	 Occurs when fixed-sized memory allocation is used.

	 •	 Can be reduced by using smaller allocation units or dynamic memory 
allocation strategies.




2. External Fragmentation 

Definition: 
External fragmentation occurs when free memory is scattered in small blocks throughout the 
system, making it difficult to allocate large contiguous blocks even though the total free 
memory is sufficient.


	 • Cause: This happens in systems that allocate memory dynamically and release 
it in smaller chunks, leaving scattered gaps of free memory between allocated blocks.


	 • Example: Even if 100 KB of memory is free, if it is divided into small non-
contiguous blocks (e.g., 50 KB, 20 KB, 30 KB), it may not be possible to allocate a 90 KB 
block to a process, leading to external fragmentation.


Diagram for External Fragmentation: 

[ Allocated ] [ Free 50 KB ] [ Allocated ] [ Free 30 KB ] [ Allocated ] [ Free 20 KB ] 
   Process 1      (Free)         Process 2       (Free)        Process 3       (Free) 

in the diagram: 
	 •	 Even though 100 KB of memory is free, it is fragmented into non-contiguous 
blocks (50 KB, 30 KB, and 20 KB).

	 •	 A large process (e.g., 90 KB) cannot be allocated because it requires a 
contiguous block of memory.


Key Points about External Fragmentation: 
	 •	 Wasted space outside allocated memory blocks.

	 •	 Occurs due to dynamic memory allocation and deallocation.

	 •	 Can be reduced by compaction (moving processes) or using techniques like 
paging or segmentation.


Conclusion: 
	 •	 Internal Fragmentation wastes memory within allocated blocks, and is often 
solved by more flexible memory allocation techniques.

	 •	 External Fragmentation wastes memory in scattered small chunks outside 
allocated blocks, and is typically managed by memory compaction, paging, or 
segmentation.



