Lecture Notes on
Analysis and Design of Algorithms
BCS401

Module-1: Introduction to Algorithm

1.

Contents

Introduction
1.1. What is an Algorithm?
1.2. Algorithm Specification
1.3. Analysis Framework
Performance Analysis

2.1. Space complexity

2.2. Time complexity
Asymptotic Notations
3.1. Big-Oh notation
3.2. Omega notation
3.3. Theta notation
3.4. Little-oh notation
3.5. Basic symptotic notations
3.6. Mathematical analysis of Recursive and non-recursive algorithm

Brute force design technique:

4.1. Selection sort

4.2. Sequential search

4.3. String matching algorithm with complexity Analysis.

ADA BCS401

Module-1: Introduction

1.1 Introduction

1.1.1 What is an Algorithm?

Algorithm: An algorithm is a finite sequence of unambiguous instructions to solve a particular
problem.

a. Input. Zero or more quantities are externally supplied.
Output. At least one quantity is produced.

c. Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear what
should be done.

d. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the algorithm
terminates after a finite number of steps.

e. Effectiveness. Every instruction must be very basic so that it can be carried out, in principle,
by a person using only pencil and paper. It is not enough that each operation be definite as in
criterion c; it also must be feasible.

1.1.2. Algorithm Specification
An algorithm can be specified in

1) Simple English

2) Graphical representation like flow chart
3) Programming language like C++/java
4) Combination of above methods.

Example: Combination of simple English and C++, the algorithm for selection sort is specified as
follows.

for (i=1; i<=n; i++) {
examine a[i] to a[n] and suppose
the smallest element is at aljl;
interchange ali] and a[jl;

}

Example: In C++ the same algorithm can be specified as follows. Here Type is a basic or user
defined data type.

void SelectionSort(Type a[], int n)
// Sort the array a[l:n] into nondecreasing order.

{
for (int i=1; i<=n; i++) {
int j = i;
for (int k=i+1; k<=n; k++)
if (alkl<aljl) j=k;
) Type t = alil; ali] = aljl; al[j] = t;
}

CSE, SVIT 1

ADA BCS401

1.1.3. Analysis Framework

Measuring an Input’s Size

It is observed that almost all algorithms run longer on larger inputs. For example, it takes longer to
sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to investigate an
algorithm's efficiency as a function of some parameter n indicating the algorithm's input size.

There are situations, where the choice of a parameter indicating an input size does matter. The
choice of an appropriate size metric can be influenced by operations of the algorithm in question. For
example, how should we measure an input's size for a spell-checking algorithm? If the algorithm
examines individual characters of its input, then we should measure the size by the number of
characters; if it works by processing words, we should count their number in the input.

We should make a special note about measuring the size of inputs for algorithms involving properties
of numbers (e.g., checking whether a given integer n is prime). For such algorithms, computer
scientists prefer measuring size by the number b of bits in the n's binary representation:= logzn] + 1.
This metric usually gives a better idea about the efficiency of algorithms in question.

Units for Measuring Running lime

To measure an algorithm's efficiency, we would like to have a metric that does not depend on these
extraneous factors. One possible approach is to count the number of times each of the algorithm's
operations is xecuted. This approach is both excessively difficult and, as we shall see, usually
unnecessary. The thing to do is to identify the most important operation of the algorithm, called the
basic operation, the operation contributing the most to the total running time, and compute the number
of times the basic operation is executed.

For example, most sorting algorithms work by comparing elements (keys) of a list being sorted with
each other; for such algorithms, the basic operation is a key comparison.

As another example, algorithms for matrix multiplication and polynomial evaluation require two
arithmetic operations: multiplication and addition.

Let cop be the execution time of an algorithm's basic operation on a particular computer, and let C(n) be
the number of times this operation needs to be executed for this algorithm. Then we can estimate the
running time T(n) of a program implementing this algorithm on that computer by the formula:

T(n) = copC(n)
Unless n is extremely large or very small, the formula can give a reasonable estimate of the algorithm's
running time.

It is for these reasons that the efficiency analysis framework ignores multiplicative constants and
concentrates on the count's order of growth to within a constant multiple for large-size inputs.

CSE, SVIT 2

ADA BCS401

Orders of Growth

Why this emphasis on the count's order of growth for large input sizes? Because for large values of n, it
is the function's order of growth that counts: just look at table which contains values of a few functions
particularly important for analysis of algorithms.

Table: Values of several functions important for analysis of algorithms

n log, n n nlog,n n? n’ 2" n!
10 33 10! 3.3.10! 10° 10° 13 3.6.10°
10¢ 6.6 102 6.6:10° 104 106 1310 9.3.40'%

10° 10 10° 1010 106 10°
10* 13 104 1.310° 108 1012
107 17 10° 1.7-106 101 108
100 20 100 2.0-107 1012 1018

Algorithms that require an exponential number of operations are practical for solving only problems of
very small sizes.

1.2. Performance Analysis
There are two kinds of efficiency: time efficiency and space efficiency.

e Time efficiency indicates how fast an algorithm in question runs;
e Space efficiency deals with the extra space the algorithm requires.

In the early days of electronic computing, both resources time and space were at a premium. The
research experience has shown that for most problems, we can achieve much more spectacular progress
in speed than inspace. Therefore, we primarily concentrate on time efficiency.

1.2.1 Space complexity

Total amount of computer memory required by an algorithm to complete its execution is called as space
complexity of that algorithm. The Space required by an algorithm is the sum of following components

e A fixed part that is independent of the input and output. This includes memory space for codes,
variables, constants and so on.

e A variable part that depends on the input, output and recursion stack. (We call these
parameters as instance characteristics)

Space requirement S(P) of an algorithm P, S(P) = c + Sp where c is a constant depends on the fixed
part, Sp is the instance characteristics\

Example-1: Consider following algorithm abc()

float abc(float a, float b, float c)
{ return (a + b + b*c + (at+b-c)/(a+b) + 4.0);
}

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0

CSE, SVIT 3

ADA BCS401

Example-2: Let us consider the algorithm to find sum of array. For the algorithm given here the
problem instances are characterized by n, the number of elements to be summed. The space needed by

a[]depends on n.So the space complexity can be written as;Ssum (2] 2 (n+3): n for a[], One each for

n, i and s.
float Sum(float a[], int n)
{ float s = 0.0;
for (int i=1; i<=n; i++)
8 4= ali]
return s;

1.2.2 Time complexity

Usually, the execution time or run-time of the program is refereed as its time complexity denoted by
to(instance characteristics). This is the sum of the time taken to execute all instructions in the program.
Exact estimation runtime is a complex task, as the number of instructions executed is dependent on the
input data. Also different instructions will take different time to execute. So for the estimation of the
time complexity we count only the number of program steps. We can determine the steps needed
by a program to solve a particular problem instance in two ways.

Method-1: We introduce a new variable count to the program which is initialized to zero. We also
introduce statements to increment count by an appropriate amount into the program. So when each
time original program executes, the count also incremented by the step count.

Example: Consider the algori hm sum(). After the introduction of the count the program will be as
follows. We can estimate that invocation of sum() executes total number of 2n+3 steps.

float Sum(float a[], int n)
{ float s = 0.0;
count++; // count is global
for (int i=1; i<=n; i++) {
count++; // For ‘for’
; s += a[i]; count++; // For assignment
count++; // For last time of ‘for’
count++; // For the return
return s;

Method-2: Determine the step count of an algorithm by building a table in which we list the total
number of steps contributed by each statement. An example is shown below. The code will find the sum
of n numbers.

Example: Matrix addition

___ Statement [s/e|freq | total
SUvoid Add(Type all[SIZEI, ...) [0 |- 0
fl { for (int i=1; i<=m; i++) 1 m+1 m+1
{ for (int j=1; j<=n; j++) 1 m(n+1) | mn+m
c[il (31 = alil[j]
+ blil [j1; 1 mn mn
} L 0 |- 0
= Total] | [2mn+2m+1

CSE, SVIT Total | | | 2n+ 3 4

ADA BCS401

The above method is both excessively difficult and, usually unnecessary. The thing to do is to identify the most
important operation contributing the m operation of the algorithm, called the basic operation, the st to the total
running time, and compute the number of times the basic operation is executed.

Trade-off

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with few
computing time and low memory consumption. One has to make a compromise and to exchange
computing time for memory consumption or vice versa, depending on which algorithm one chooses
and how one parameterizes it.

1.3. Asymptotic Notations

The efficiency analysis framework concentrates on the order of growth of an algorithm’s basic operation count
as the principal indicator of the algorithm’s efficiency. To compare and rank such orders of growth, computer

scientists use three notations: O(big oh), Q(big omega), ® (big theta) and o(little oh)

1.3.1. Big-Oh notation * cg(n)

t(n)

Definition: A function t(n) is said to be in O(g(n)),
denoted t(n)€0(g(n)), if t (n) is bounded above by
some constant multiple of g(n) for all large n, i.e., if
there exist some positive constant ¢ and some
nonnegative integer no such that doesn't

matter

t(n) < cg(n)forall n 2 m,.

0

Big-oh notation: t(n) € O(g(n)).

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n). Note
that the definition gives us a lot of freedom in choosing specific valuesfor constants ¢ and ny.

2Examples: ne(n?),100n+5¢€ (n?),! (n—1)e0(n?)

n3 ¢ (n?), 0.00001n3 ¢ (n?), n# + n + 1 ¢ (n?)

CSE, SVIT 5

ADA BCS401

Strategies to prove Big-O: Sometimes the easiest way to prove that f (n) = O(g(n)) is to take c to
be the sum of the positive coefficients off(n). We can usually ignore the negative coefficients.

Example: To prove 5n2 + 3n + 20 = O(n?), we Example: To prove 100n + 5 € O(n%)

pickc=54+3+20=28 Theniftn > ny =1, 100n +5 < 105n2. (C:105, I’lozl)

5n2 4+ 3n+20 <5n2+3n2 12002 =928n2, Example: To prove n’+n= O(ng)

. . =1+1=2, i 2nn= 2

thus 5n? + 3n + 20 = O(n?). Takesc 1+1=2, if n 2n¢=1, then n” +n
=0(n°)

i) Prove 3n+2=0(n) ii) Prove 1000n°+100n-6 = O(n?)

1.3.2. Omega notation

Definition: A function t(n) is said to be in Q(g(r
denoted t(n)EQ(g(n)), if t(n) is bounded below
some positive constant multiple of g(n) for all lar
n,i.e., if there exist some positive constant ¢ and sol
nonnegative integer no suchthatt(n) 2 ¢ gfn) £

all n 2 n,. doesn't
matter

L » N
My

Big-omega notation: t(n) € Q2(g(n)).

Here is an example of the formal proof that n* €Q?):n® 2 7 for alln 2 0, i.e., we
can select ¢ =1 and ny=0.

) 1 5 :
Example: n® e Q(n?d), En(n —1) e Q(n°), bul 100n + 5 &€ Q(n?).

Example: To prove n* + 4n® = Q(n?)
We see that, if n>0, n®*+4n?2 n®2 n?® Therefore n®+4n? 2 1n’for
alln>0 Thus, we have shown that n®+4n*=Q(n?) wherec =1 &

ng=0

¢1gin)
1.3.3. Theta notation 4

(n]
A function t(n) is said to be in ®(g(n)), denoted t ;2;(”}

€ 0(g(n)),if t (n) is bounded both above and belc
by some positive constant multiples ofg(n)

e

for all large n, i.e., if there exist some positive —

constants c; and ¢, and somenonnegative integer ng !
doesr’t |

such that matter "

c2g(n) < t(n) <cig(n) for all n = no.

Sk
[=]

CSE, SVIT 6

ADA BCS401

Big-theta notatior: r(n) € ©(g(n))

CSE, SVIT 7

ADA

For example, let us prove that %n(n — 1) € ©(n?). First, we prove the right
inequality (the upper bound):
1,

—nin—1)=—-—n"—
2 2

L

ln < ln2 forall n = 0.
2 2

Second, we prove the left inequality (the lower bound):

ln(n - 1= ln2 — ln > ln2 - lnln (foralln >2)= lnz.

2 2 22 2:°2 4
Hence, we can select ¢, = 1, ¢; = 1. and ny = 2.

Example: n® + 5n + 7 = ©(n?)

Whenn > 1, Thus, when n > 1
2 = - 2 =2 = 2 19,2 2 2 - rd 19,2
n“+5n+7<n"+5°+7T° <13n 2 <n?®+6m+7<13n
Whenn > 0, Thus, we have shown that n? + 5n + 7 = 0(n?)
by definition of Big-©, with ng = 1, ¢y = 1, and
n2 <n?4+5n4+7 f(’gy 13.) 8 0 !

Strategies for Q and 0

e Proving that a f(n) = Q(g(n)) often requires more thought.
— Quite often, we have to pick ¢ < 1.
— A good strategy is to pick a value of ¢ which you think will work, and determine
which value of n is needed.
— Being able to do a little algebra helps.
— We can sometimes simplify by with the positive
ignoring terms of f(n) coefficients.
e The following theorem shows us that proving f(n) = ®(g(n)) is nothing new:

Theorem: f(n) = ®(g(n)) if and only iff(n) = O(g(n)) and f(n) = Q(g(n)).

Thus, we just apply the previous two strategies.
Show that %-’n—? +3n= @(n.g)

Notice that if n > 1,

L8, o o Lol | g T g
5” +3n < 5” —3dn° = 5”
Thus.
S i) So '
571‘ +311 :O(RJ 3712—2-'3'71:9(712)
Also. whenn = 0. Since %nz +3n = O(n?) and %7‘22 +3n = Q(n?).
| 4
S 2, ; ‘
g = 3n 3712 +3n = O(n?)

CSE, SVIT

BCS401

ADA BCS401

Show that 17> — 3n = ©(n?) oy < % - % holds forn > 10and ¢4 = 1/5

% — % < ¢9 holds for n > 10 and ¢o = 1.

Thus, if ¢; = 1/5. c2 = 1, and 1o = 10, then for

We need to find positive constants ¢, 2, and ng
such that

) : 1 B : >
0<en? < ;“2 —3n < can? foralln > ng all e = no,

2 . 1 o
o 9 0<egn? < l—-n? —3n < ean® forall n > ng.

Dividing by n=, we get 2
0 < o L3 Thus we have shown that %“2 — 3n = O(n?).
feasx_.— =Xc -
2 n

Theorem: If t(n) €0(ga1(n)) and tz(n) €0O(g2(n)), then ty(n) + t2(n) €O(max{gi(n), g=(n)}). (The
analogous assertions are true for the Q and © notations as well.)

Proof: The proof extends to orders of growth the following simple fact aboutfour arbitrary real numbers
ap, by, ap, byrifa; < byanda; < by, thena; +a; < 2 max{by, by}

Since t;(n) €0(g1(n)), there exist some positive constant c; and some nonnegative integer n; such that
t1(n) < ci0:(n) for all n 2 n,.

Similarly, since t,(n) €0(g2(n)), t2(n) < c.0.(n) for all n = n,.
Let us denote c3 = max{cy, c2} and consider n>=max{n1,n2} so that

we can use both inequalities. Adding them yields the following: ty(n) + t;(n) < c10:1(n) + c2g2(n)
< c301(n) + cag2(n) = c3[ga(n) + g2(n)]

< 32 max{gi(n), g2(n)}.

Hence, t1(n) + t2(n) € O(max{gi(n), g2(n)}), with the constants ¢ and ny required by the O
definition being 2c; = 2 max{cy, ¢z} and max{n,, n,}, respectively.

3.4. Little Oh The function f(n)=o(g(n)) [i.e f of n is a little oh of g of n] if and only if

lim (M) = 0
n—e g (1)
Example: The function 3n + 2 = o(n?) since lim,_, 3%*%2 =0. 3n+
2 = o(nlogn). 3n+2 = o(nloglogn). 6 2" + n? = o(3"). 6 x2" +n? =
o(2" logn). 3n +2 # o(n). 6% 2" +n? #£ o(2"). O

For comparing the order of growth limit is used

tn) 0 1mplies that 7(n) has a smaller order of growth than g(n).
lim = { ¢ 1mplies that 7(n) has the same order of growth as g(n),
" gn) oo implies that #(n) has a larger order of growth than g(n).

If the case-1 holds good in the above limit, we represent it by little-oh.

CSE, SVIT 9

ADA

EXAMPLE 1 Compare the orders of growth of ,_’,,, (n —1) and nZ. (This is one of
the examples we used at the beginning of this section to illustrate the definitions.)

,_];n(n —1)

lim —— = 1 lim

n—o0 nl

nZ —n - 1
== lim(l——)=
2 n—o0 p2 2 n—oc n

9] =

Since the limit is equal to a positive constant, the functions have the same order
of growth or, symbolically. Lr(n — 1) € O (n?). |

EXAMPLE 2 Compare the orders of growth of log, » and \/n. (Unlike Exam-
ple 1. the answer here is not immediately obvious.)

; log, n . log,n) 4 log, e 1 1
lim —22% _ jim (‘—'2,}—= i %=210g7e1m—=(}.
n—o0 /n n—n0 (\/ﬁ) n— o0 SN S oo /i

Since the limit is equal to zero, log, 7 has a smaller order of growth than \/n. (Since

i, o lof?;" =0, we can use the so-called little-oh netation: 10g, n € o(/n).

Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)

BCS401

1.3.5. Basic asymptotic efficiency Classes

Class

Name

Comments

1

log n

n

n logn

2
n

113

n!

CSE, SVIT

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

factorial

Short of best-case efficiencies, very few reasonable
examples can be given since an algorithm’s running
time typically goes to infinity when its input size grows
infinitely large.

Typically, a result of cutting a problem’s size by a
constant factor on each iteration of the algorithm (see
Section 4.4). Note that a logarithmic algorithm cannot
take into account all its input or even a fixed fraction
of it: any algorithm that does so will have at least linear
running time.

Algorithms that scan a list of size n (e.g., sequential
search) belong to this class.

Many divide-and-conquer algorithms (see Chapter 5).
including mergesort and quicksort in the average case,
fall into this category.

Typically. characterizes efficiency of algorithms with
two embedded loops (see the next section). Elemen-
tary sorting algorithms and certain operationsonn X n
matrices are standard examples.

Typically, characterizes efficiency of algorithms with
three embedded loops (see the next section). Several
nontrivial algorithms from linear algebra fall into this
class.

Typical for algorithms that generate all subsets of an
n-element set. Often. the term “exponential™ is used
in a broader sense to include this and larger orders of
growth as well.

Typical for algorithms that generate all permutations
of an n-element set.

10

ADA BCS401

1.3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms

Analysis of Non-recursive Algorithms
General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.)

3. Check whether the number of times the basic operation is execut d depends only on the size of
an input. If it also depends on some additional property, the worst-case, average-case, and, if
separately.

4. Setup a sum expressing the number of times the algorithm’s executed.
5. Using standard formulas and rules of sum manipulation, either
Example-1: To find maximum element in the given array

ALGORITHM MaxElement(A|0..n — 1])

//Determines the value of the largest element in a given ai
/Mnput: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if Ai] > maxval

maxval < Ali]

return maxval

Here comparison is the basic operation. Note that number of comparisions will be same for all
arrays of size n. Therefore, no need to distinguish worst, best and average cases. Total number of
basic operations are,

n—I1
Cn) = Z l=n—1€0G(M).

i=1
Example-2: To check whether all the elements in the given array are distinct

ALGORITHM UniqueFElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Mnput: An array A[O..n — 1]
//Output: Returns “true™ if all the elements in A are distinct
/! and “false” otherwise
fori < 0Oton —2do

for j < i+1ton—1do

if A|i]= A[/]return false

return true

CSE, SVIT 11

ADA BCS401

Here basic operation is comparison. The maximum no. of comparisons happens in the worst case. i.e.
all the elements in the array are distinct and algorithms return true).

Total number of basic operations (comparison) in the worst case are,

n—2 n—1 n—2 n—2

Cuworst(ZZI—Z[”_I_(1+1)+1] Z(ll—l—f)
i=0 j=i+l i=0 i=0
Z(”—l)—Z,”_lzl_”_—(”_l)
i=0 =0 i=0
n—2)(n—-1) (n—1n

— 1 B O
= \R — ot = ~ —II II
2 2 2

Other than the worst case, the total comparisons areless than 1 1%2. For example if the first two elements

of the array are equal, only one comparison is computed. So in general C(n) =O(n?)

Example-3: To perform matrix multiplication

ALGORITHM MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0..n — 1, 0..n — 1])
//Multiplies two square matrices of order n by the definition-based algorithm
/Mnput: Two n x n matrices A and B
[IOutput: Matrix C = AB
fori < 0Oton — 1do

for j < Oton—1do
Cli, j] < 0.0
fork < 0Oton —ldo
Cli, j] < Cli, j]1+ Ali, k] % Blk, j]
return C

Number of basic operations (multiplications) is

n—1 n—1n—1 n—1n—1 n—1
M(n}z22212221322172:!13.
i=0 j=0 k=0 i=0 j=0 i=0

. . ~ - , RN
Total running time: 1 (1) = ¢, M(n) = c;yn
Suppose if we take into account of addition; Algoritham also have same number of additions
A(n) =n®

Total running time: I'in)~c,M(n)+c,A(n) = cmn + can =il 4 ca)n

CSE, SVIT 12

ADA BCS401

Example-4: To count the bits in the binary representation

ALGORITHM Binary(n)
/Mnput: A positive decimal integer n
/[Output: The number of binary digits in n’s binary representation
count < 1
while n == 1 do
count < count + 1
n<|n/2
return count

The basic operation is count=count + 1 repeats [1ogs n] + Tno. of times

Analysis of Recursive Algorithms
General plan for analyzing the time efficiency of recursive algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can varyon different inputs of the same
size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately. Set
up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation
is executed.

4, Solve the recurrence or, at least, ascertain the order of growth of its solution.

Example-1 Compute the factorial function F(n) = n! for an arbitrary nonneg-
ative integer n. Since

nl=1-...-m—=1) -n=mn—-1!-n forn>1

and 0! =1 by definition, we can compute F(n) = F(n — 1) - n with the following
recursive algorithm.

ALGORITHM F(n)

/IComputes n! recursively
/Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) *n

Since the function F(n) is computed according to the formula
Fimy=Fn—-1)-n form=0,

The number of multiplicationsM(n) needed to compute it must satisfy the equality

M@)=Mmn-1) + I forn > 0.
to compute to multiply
F(n—1) F(n—1) by n

Such equations are called recurrence relations
CSE, SVIT 13

ADA BCS401

Condition that makes the algorithm stopif n = 0 return 1. Thus recurrence relation and initial
conditionfor the algorithm’s number of multiplications M(n) can be stated as

Mny=Mmn—-1)+1 forn >0,
M) =0.
We can use backward substitutions method to solve this
Mn)=Mmn-1)+1 substitute M(n — 1) =Mmn —2) + 1
=[Mn—-2)+1]+1=M(n—2)+2 substitute M(n —2)=M(n —3) + 1
=[Mn—-3)+1]+2=M(n —3)+3.

=Mmn—-—i)+i=--=Mmn—n)+n=n.

Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that canslide
onto any of three pegs. Initially, all the disks are on the first peg in order ofsize, the largest on the bottom
and the smallest on top. The goal is to move all thedisks to the third peg, using the second one as an
auxiliary, if necessary. We canmove only one disk at a time, and it is forbidden to place a larger disk on

top of asmaller one.The problem has an elegant recursive solution, which is illustrated in Figure.

1. If n=1, we move the single disk directly from the source peg to the destination peg.

2. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary),
o we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary),
o then move the largest disk directly from peg 1 to peg 3, and,
o finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary).

Figure: Recursive solution to the Tower of Hanoi puzzle

Algorithm: TowerOfHanoi(n, source, dest, aux)
Ifn==1, THEN
move disk from
source to dest else
TowerOfHanoi (n - 1, source, aux, dest)
move disk from source to dest
TowerOfHanoi (n - 1, aux, dest, source)
End if

CSE, SVIT 14

ADA BCS401

Computation of Number of Moves
The number of moves M(n) depends only on n. The recurrence equation is

Mn)=Mu-D+1+Mmn-1 ftorn=>1.

We have the following recurrence relation for the number of moves M(n):
Mn)=2Mmn —1)+1 forn>1
M@1)=1.
We solve this recurrence by t e same method of backward substitutions:
Mn)=2Mmn —-1)+1 sub. M(n —1)=2Mn —2) + 1
=22M@n -2)+1]+1=22M@n —-2)+2+1 sub. M(n—2)=2M(n —3) +1
=22PMn -3 +1]+2+1=2Mn —-3)+22+2+ L.

The pattern of the first three sums on the left suggests that the next one will be

M) =2Me—+21 4024 . +24+1=2MG —i)+2" -1
2°M(n - 4) + 2° + 22 + 2 + 1, and generally, after i substitutions, we get

Since the initial condition is specified for n = 1, which is achieved for i = n-1, we get the
following formula for the solution to recurrence,
M) =2"""Mn—mn-1)+2""1-1
— 2?‘.'—1M(~1) i 2'1—1 —f =2n—l 4 2)1—1 — =% _1

Example-3: To count bits of a decimal number in its binary representation

ALGORITHM BinRec(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in »’s binary representation
if » = 1return 1
else return BinRec(|n/2]) + 1
The recurrence relation can be written as

Also note that A(1) = 0.
An)=A(n/2])+1 forn=>1

A=A H+1 fork>0,
A% =0.

The standard approach to solving such a recurrence is to solve it only for n = 2% and then take
advantage of the theorem called the smoothness rule which claims that under very broad

CSE, SVIT 15

ADA

BCS401

assumptions the order of growth observed for n = 2¥ gives a correct answer about the order of

growth for all values of n.

Now backward substitutions encounter no problems:
ARYH =A@ Y +1 substitute A(2X" 1) = A2 %) +1
=[AQ*?) +1]+ 1= AQ2F?) +2 substitute AQ*) = A2) +1
=[AQ) +1]+2=A402") +3

= A2 4+

=AM 1k
Thus, we end up with
A%y = A() +k =k,
or, after returning to the original variable n = 2¥ and hence k =log, n.

A(n)=1og, n € ®(logn).

CSE, SVIT

16

ADA BCS401

1.4. Brute force design technique:
Brute force is straight forward approach to solving a problem, usually directly based on the

problem statement and definitions of the concepts involved.

1.4.1 Selection sort

We start selection sort by scanning the entire given list to find its smallest element and exchange it with
the first element, putting the smallest element in its final position in the sorted list. Then we scan the list, starting
with the second element, putting the second smallest element in its final position. Generally, on the ith pass
through the list, which we number from 0 to n-2, the algorithm searches for the last n-1 elements and swaps it with

in their final positions the last n-i elements

After n-1 passes, the list is sorted.

ALGORITHM SelectionSort(A[0..n — 1])

//Sorts a given array by selection sort
//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in ascending order
fori <« Oton—2do
min < i :
forj «—i+1ton—-1do
if A[j] < Almin] min «j
swap A[i] and A[min]

The number of times the algorithm executed depends only on the array’s size and is given by

n—2 n—1 n-2 n—-2
Cw=3 3 1=3In-D-G+)+11=Y (1 —1-0.
i=0 j=i+1 i=0 i=0
After solving using summation formulas
n-2 n-1 n-2 y n—1n
cm=Y Y t=) a-1-i)=——.
i=0 j=i+1 =0

Thus selection sort has a ®@(n2) time complexity.

1.4.2 Sequential search

This is also called as Linear search. Here we start from the initial element of the array and compare it with the
search key. We repeat the same with all the elements of the array till we encounter the search key or till we reach

end of the array.

CSE, SVIT 17

ADA BCS401

ALGORITHM SequentialSearch2(A[0..n), K)
/Tmplements sequential search with a search key as a sentinel
//Tnput: An array A of n elements and a search key K
//Output: The index of the first element in A[0..n — 1] whose value is
" equal to X or —1 if no such element is found
Alnl <« K
i<0
while A[i] # K de
i—i+1
ifi < nretarn i
else return —1

The time efficiency in worst case is O(n), where n is the number of elements of the array. In best case it is O(1), it
means the very first element is the search key.
1.4.3 String matching algorithm with complexity Analysis

Another example of Brute force approach is string matching, where string of n characters called text and a string
of m characters (m<=n) called the pattern is given. Here job is to find whether the pattern is present in text or not.

If we want to find i-the index of the leftmost character of the first matching substring in the

text—such that ; = py. ..., tiyj =pj, . . . ditm—1 = Pm—1-
o ... G oo liyi el ligm—1 L th—1 textT
0.4 ?
Po ... pi ... Pm-1* pattern P

We start matching with the very first character, if a match then only j is incremented and again compared with next
character of both the strings. If not then I is incremented and j starts from beginning of pattern string. If pattern
found we return the position from where the pattern began. Pattern is tried to match till n-m elements, later we
need not try to match as the elements will be lesser than pattern. If it doesn’t match by n-m elements then pattern is

not matched.

ALGORITHM BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

/Mmplements brute-force string matching
/Mnput: An array T[0..n — 1] of n characters representing a text and

1/ an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
I matching substring or —1 if the search is unsuccessful
fori —~Oton—mdo

j«0

while j < m and P[j] = T[i +j] do

J<j+1

ifj = mreturn i

return —1

The worst case is @(nm). Best case is ®(m).

CSE, SVIT 18

