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1.1 Introduction 

Module-1: Introduction

1.1.1 What is an Algorithm? 

Algorithm: An algorithm is a finite sequence of unambiguous instructions to solve a particular 

problem. 

a. Input. Zero or more quantities are externally supplied. 

b. Output. At least one quantity is produced. 

c. Definiteness. Each instruction is clear and unambiguous. It must be perfectly clear what 

should be done. 

d. Finiteness. If we trace out the instruction of an algorithm, then for all cases, the algorithm 

terminates after a finite number of steps. 

e. Effectiveness. Every instruction must be very basic so that it can be carried out, in principle, 

by a person using only pencil and paper. It is not enough that each operation be definite as in 

criterion c; it also must be feasible. 

1.1.2. Algorithm Specification 

An algorithm can be specified in 

1) Simple English 

2) Graphical representation like flow chart 

3) Programming language like C++/java 

4) Combination of above methods. 

Example: Combination of simple English and C++, the algorithm for selection sort is specified as 

follows. 

Example: In C++ the same algorithm can be specified as follows. Here Type is a basic or user 

defined data type. 
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1.1.3. Analysis Framework 

Measuring an Input’s Size 

It is observed that almost all algorithms run longer on larger inputs. For example, it takes longer to 

sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to investigate an 

algorithm's efficiency as a function of some parameter n indicating the algorithm's input size. 

There are situations, where the choice of a parameter indicating an input size does matter. The 

choice of an appropriate size metric can be influenced by operations of the algorithm in question. For 

example, how should we measure an input's size for a spell-checking algorithm? If the algorithm 

examines individual characters of its input, then we should measure the size by the number of 

characters; if it works by processing words, we should count their number in the input. 

We should make a special note about measuring the size of inputs for algorithms involving properties 

of numbers (e.g., checking whether a given integer n is prime). For such algorithms, computer 

scientists prefer measuring size by the number b of bits in the n's binary representation:=   log2 n ] + 1. 

This metric usually gives a better idea about the efficiency of algorithms in question. 

 

Units for Measuring Running lime 

To measure an algorithm's efficiency, we would like to have a metric that does not depend on these 

extraneous factors. One possible approach is to count the number of times each of the algorithm's 

operations is xecuted. This approach is both excessively difficult and, as we shall see, usually 

unnecessary. The thing to do is to identify the most important operation of the algorithm, called the 

basic operation, the operation contributing the most to the total running time, and compute the number 

of times the basic operation is executed. 

For example, most sorting algorithms work by comparing elements (keys) of a list being sorted with 

each other; for such algorithms, the basic operation is a key comparison. 

As another example, algorithms for matrix multiplication and polynomial evaluation require two 

arithmetic operations: multiplication and addition. 

Let cop be the execution time of an algorithm's basic operation on a particular computer, and let C(n) be 

the number of times this operation needs to be executed for this algorithm. Then we can estimate the 

running time T(n) of a program implementing this algorithm on that computer by the formula: 

𝑇(𝑛) ≈ 𝑐𝑜𝑝𝐶(𝑛) 

Unless n is extremely large or very small, the formula can give a reasonable estimate of the algorithm's 

running time. 

It is for these reasons that the efficiency analysis framework ignores multiplicative constants and 

concentrates on the count's order of growth to within a constant multiple for large-size inputs.
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Orders of Growth 

Why this emphasis on the count's order of growth for large input sizes? Because for large values of n, it 

is the function's order of growth that counts: just look at table which contains values of a few functions 

particularly important for analysis of algorithms. 

Table: Values of several functions important for analysis of algorithms 
 

 

Algorithms that require an exponential number of operations are practical for solving only problems of 

very small sizes. 

1.2. Performance Analysis 

There are two kinds of efficiency: time efficiency and space efficiency. 

● Time efficiency indicates how fast an algorithm in question runs; 

● Space efficiency deals with the extra space the algorithm requires. 

In the early days of electronic computing, both resources time and space were at a premium. The 

research experience has shown that for most problems, we can achieve much more spectacular progress 

in speed than inspace. Therefore, we primarily concentrate on time efficiency. 

1.2.1 Space complexity 

Total amount of computer memory required by an algorithm to complete its execution is called as space 

complexity of that algorithm. The Space required by an algorithm is the sum of following components 

● A fixed part that is independent of the input and output. This includes memory space for codes, 

variables, constants and so on. 

● A variable part that depends on the input, output and recursion stack. ( We call these 

parameters as instance characteristics) 

Space requirement S(P) of an algorithm P,   S(P) = c + Sp where c is a constant depends on the fixed 

part, Sp is the instance characteristics\ 

Example-1: Consider following algorithm abc() 
 

Here fixed component depends on the size of a, b and c. Also instance characteristics Sp=0
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Example-2: Let us consider the algorithm to find sum of array. For the algorithm given here the 

problem instances are characterized by n, the number of elements to be summed. The space needed by 

a[ ]depends on n.So the space complexity can be written as;Ssum(n) ≥ (n+3); n for a[ ], One each for 

n, i and s. 

 

 

 

 

 

 
1.2.2 Time complexity 

Usually, the execution time or run-time of the program is refereed as its time complexity denoted by 

tp(instance characteristics).   This is the sum of the time taken to execute all instructions in the program. 

Exact estimation runtime is a complex task, as the number of instructions executed is dependent on the 

input data. Also different instructions will take different time to execute. So for the estimation of the 

time complexity we count only the number of program steps. We can determine the steps needed 

by a program to solve a particular problem instance in two ways. 

Method-1: We introduce a new variable count to the program which is initialized to zero. We also 

introduce statements to increment count by an appropriate amount into the program. So when each 

time original program executes, the count also incremented by the step count. 

Example: Consider the algori hm sum(). After the introduction of the count the program will be as 

follows. We can estimate that invocation of sum() executes total number of 2n+3 steps. 

 
 

Method-2: Determine the step count of an algorithm by building a table in which we list the total 

number of steps contributed by each statement. An example is shown below. The code will find the sum 

of  n numbers.

Example: Matrix addition 
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The above method is both excessively difficult and, usually unnecessary. The thing to do is to  identify the most 

important operation contributing the m operation of the algorithm, called the  basic  operation, the st to the total 

running time, and compute the number of times  the basic operation is executed. 

Trade-off 

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with few 

computing time and low memory consumption. One has to make a compromise and to exchange 

computing time for memory consumption or vice versa, depending on which algorithm one chooses 

and how one parameterizes it. 

1.3. Asymptotic Notations 

The efficiency analysis framework concentrates on the order of growth  of an algorithm’s basic  operation count 

as the principal indicator of the algorithm’s efficiency. To compare and rank such orders of growth, computer 

scientists use three notations: O(big oh), Ω(big omega), Θ (big theta) and o(little oh) 

1.3.1. Big-Oh notation 

Definition: A function t(n) is said to be in O(g(n)), 

denoted t(n)∈O(g(n)), if t (n) is bounded above by 

some constant multiple of g(n) for all large n, i.e., if 

there exist some positive constant c and some 

nonnegative integer n0 such that 

t(n) ≤ cg(n) for all n ≥ n0. 
 
 

 
Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n). Note 

that the definition gives us a lot of freedom in choosing specific valuesfor constants c and n0. 

Examples: 𝑛 є (𝑛2), 100𝑛 + 5 є (𝑛2), 1 (𝑛 − 1)є𝑂(𝑛2) 
2 

𝑛3 ∉ (𝑛2), 0.00001𝑛3 ∉ (𝑛2), 𝑛4 + 𝑛 + 1 ∉ (𝑛2)
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Strategies to prove Big-O: Sometimes the easiest way to prove that f (n) = O(g(n)) is to take c to 

be the sum of the positive coefficients off(n). We can usually ignore the negative coefficients. 
 

Example: To prove 100n + 5 ∈ O(n
2
) 

100n + 5 ≤ 105n
2
. (c=105, n0=1) 

Example: To prove n
2
 + n = O(n

3
) 

Take c = 1+1=2, if n ≥n0=1, then n
2
 + n 

= O(n
3
) 

 

i) Prove 3n+2=O(n) ii) Prove 1000n
2
+100n-6 = O(n

2
) 

1.3.2. Omega notation 

Definition: A function t(n) is said to be in Ω(g(n)), 

denoted t(n)∈Ω(g(n)), if t(n) is bounded below by 

some positive constant multiple of g(n) for all large 

n,i.e., if there exist some positive constant c and some 

nonnegative integer n0 suchthatt(n) ≥ c g(n) for 

all n ≥ n0. 

 

 

 

 
Here is an example of the formal proof that n

3
 ∈Ω(n

2
):n

3 ≥ n2
 for all n ≥ 0, i.e., we 

can select c = 1 and n0 = 0. 

 
Example: 

 
Example: To prove n

3
 + 4n

2
 = Ω(n

2
) 

We see that, if n≥0, n3
+4n

2≥ n3≥ n2;
 Therefore n

3
+4n

2 ≥ 1n2for 

alln≥0 Thus, we have shown that n3
+4n

2
 =Ω(n

2
) where c = 1 & 

n0=0 

 

1.3.3. Theta notation 

A function t(n) is said to be in Θ(g(n)), denoted t(n) 

∈ Θ(g(n)),if t (n) is bounded both above and below 

by some positive constant multiples ofg(n) 

for all large n, i.e., if there exist some positive 

constants c1 and c2 and somenonnegative integer n0 

such that 

c2g(n) ≤ t(n) ≤c1g(n) for all n ≥ n0. 
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Example: n
2
 + 5n + 7 = Θ(n

2
) 

Strategies for Ω and Θ 

● Proving that a f(n) = Ω(g(n)) often requires more thought. 

– Quite often, we have to pick c < 1. 

– A good strategy is to pick a value of c which you think will work, and determine 

which value of n0 is needed. 

– Being able to do a little algebra helps.

– We can sometimes simplify by 

ignoring terms of f(n) coefficients. 

with the positive

● The following theorem shows us that proving f(n) = Θ(g(n)) is nothing new: 

Theorem: f(n) = Θ(g(n)) if and only iff(n) = O(g(n)) and f(n) = Ω(g(n)). 

Thus, we just apply the previous two strategies. 
 

 

 

 

 

 



ADA  BCS401 

CSE, SVIT  9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Theorem: If t1(n) ∈O(g1(n)) and t2(n) ∈O(g2(n)), then t1(n) + t2(n) ∈O(max{g1(n), g2(n)}). (The 

analogous assertions are true for the Ω and Ө notations as well.) 

Proof: The proof extends to orders of growth the following simple fact aboutfour arbitrary real numbers 

a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤ 2 max{b1, b2}. 

Since t1(n) ∈O(g1(n)), there exist some positive constant c1 and some nonnegative integer n1 such that 

t1(n) ≤ c1g1(n) for all n ≥ n1. 

Similarly, since t2(n) ∈O(g2(n)), t2(n) ≤ c2g2(n) for all n ≥ n2.

Let us denote c3 = max{c1, c2} and consider n>=max{n1,n2} so that  

we can use both inequalities. Adding them yields the following: t1(n) + t2(n) ≤ c1g1(n) + c2g2(n) 

≤ c3 g1(n) + c3g2(n) = c3[g1(n) + g2(n)] 

≤ c32 max{g1(n), g2(n)}. 

Hence, t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}), with the constants c and n0 required by the O 

definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively. 

 

3.4. Little Oh The function f(n)= o(g(n)) [ i.e f of n is a little oh of g of n ] if and only if 

lim ƒ(𝑛) = 0 

𝑛→∞ 𝑔(𝑛) 
 
 
 
 

 

For comparing the order of growth limit is used 
 

 

If the case-1 holds good in the above limit, we represent it by little-oh.

 

 

 

 Example: 
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1.3.5. Basic asymptotic efficiency Classes 
 

Class Name Comments
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1.3.6. Mathematical Analysis of Non-recursive & Recursive Algorithms 

Analysis of Non-recursive Algorithms 

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 

2. Identify the algorithm’s basic operation. (As a rule, it is located in innermost loop.) 

3. Check whether the number of times the basic operation is execut d depends only on the size of 

an input. If it also depends on some additional property, the worst-case,  average-case, and, if 

separately.   

4. Set up a sum expressing the number of times the algorithm’s executed. 

5. Using standard formulas and rules of sum manipulation, either 

Example-1: To find maximum element in the given array 
 

 

 

 

Here comparison is the basic operation. Note that number of comparisions will be same for all 

arrays of size n. Therefore, no need to distinguish worst, best and average cases. Total  number of 

basic operations are, 

 

 

 

 

 

Example-2: To check whether all the elements in the given array are distinct 
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2 

Here basic operation is comparison. The maximum no. of comparisons happens in the worst case.  i.e. 

all the elements in the array are distinct and algorithms return true). 

Total number of basic operations (comparison) in the worst case are, 
 
 

 

 

Other than the worst case, the total comparisons areless than 1 𝑛2. For example if the first two elements 

of the array are equal, only one comparison is computed.  So in general C(n) =O(n
2
) 

Example-3: To perform matrix multiplication 

 

Number of basic operations (multiplications) is 

 

 

 

Total running time:  

Suppose if we take into account of addition; Algoritham also have same number of additions 

A(n) = n
3 

Total running time:  
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Example-4: To count the bits in the binary representation 
 

 
 

The basic operation is count=count + 1 repeats  no. of times 

Analysis of Recursive Algorithms 
General plan for analyzing the time efficiency of recursive algorithms 

 

1. Decide on a parameter (or parameters) indicating an input’s size. 

2. Identify the algorithm’s basic operation. 

3. Check whether the number of times the basic operation is executed can varyon different inputs of the same 

size; if it can, the worst-case, average-case, and best-case  efficiencies must be investigated  separately. Set 

up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation 

is executed. 

4. Solve the recurrence or, at least, ascertain the order of growth of its solution. 

 

 

Since the function F(n) is computed according to the formula 

The number of multiplicationsM(n) needed to compute it must satisfy the equality 
 

Such equations are called recurrence relations 

 

 Example-1 
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Condition that makes the algorithm stopif n = 0 return 1. Thus recurrence relation and initial 

conditionfor the algorithm’s number of multiplications M(n) can be stated as 

 

We can use backward substitutions method to solve this 

…. 
 

 

 

 

 

 

 

Example-2: Tower of Hanoi puzzle. In this puzzle, There are n disks of different sizes that canslide 

onto any of three pegs. Initially, all the disks are on the first peg in order ofsize, the largest on the bottom 

and the smallest on top. The goal is to move all thedisks to the third peg, using the second one as an 

auxiliary, if necessary. We canmove only one disk at a time, and it is forbidden to place a larger disk on 

top of asmaller one.The problem has an elegant recursive solution, which is illustrated in Figure. 

1. If n = 1, we move the single disk directly from the source peg to the destination peg. 

2. To move n>1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), 

o we first move recursively n-1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), 

o then move the largest disk directly from peg 1 to peg 3, and, 

o finally, move recursively n-1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). 
 

Figure: Recursive solution to the Tower of Hanoi puzzle 

 

Algorithm: TowerOfHanoi(n, source, dest, aux) 

If n == 1, THEN 

move disk from 

source to dest else 

TowerOfHanoi (n - 1, source, aux, dest) 

move disk from source to dest 

TowerOfHanoi (n - 1, aux, dest, source) 

End if 
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Computation of Number of Moves 

The number of moves M(n) depends only on n. The recurrence equation is 

We have the following recurrence relation for the number of moves M(n): 

 

We solve this recurrence by t e same method of backward substitutions: 
 

 

 

 

 

The pattern of the first three sums on the left suggests that the next one will be 

2
4
M(n − 4) + 2

3
 + 2

2
 + 2 + 1, and generally, after i substitutions, we get 

Since the initial condition is specified for n = 1, which is achieved for i = n-1, we get the 

following formula for the solution to recurrence, 

 
 

 

Example-3: To count bits of a decimal number in its binary representation 
 

The recurrence relation can be written as  

Also  note that A(1) = 0. 

 

.

 

 

 

The standard approach to solving such a recurrence is to solve it only for n = 2
k
 and then take 

advantage of the theorem called the smoothness rule which claims that under very broad 
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assumptions the order of growth observed for n = 2
k
 gives a correct answer about the order of 

growth for all values of n. 
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1.4. Brute force design technique: 

Brute force is straight forward approach to solving a problem, usually directly based on the 

problem statement and definitions of the concepts involved. 

1.4.1 Selection sort 
 

  We start selection sort by scanning the entire given list to find its smallest element and exchange it with 

the first element, putting the smallest element in its final position in the sorted list. Then we scan the list, starting 

with the second element, putting the second smallest element in its final position. Generally, on the ith pass 

through the list, which we number from 0 to n-2, the algorithm searches for the last n-I elements and swaps it with 

Ai: 

            

A0 ≤ A1 ≤ …… ≤Ai-1   |   Ai…….Amin ….. An-1 

in their final positions                      the last n-i elements 

After n-1 passes, the list is sorted. 
 

 

The number of times the  algorithm executed depends only on the array’s size and is given by 
 

 

After solving using summation formulas 
 

 

Thus selection sort has a Θ(n2) time complexity. 
 

1.4.2 Sequential search 
 

This is also called as Linear search. Here we start from the initial element of the array and compare it with the 

search key. We repeat the same with all the elements of the array till we encounter the search key or till we reach 

end of the array. 
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The time efficiency in worst case is O(n), where n is the number of elements of the array. In best case it is O(1), it 

means the very first element is the search key.  

1.4.3 String matching algorithm with complexity Analysis 
 

Another example of Brute force approach is string matching, where string of n characters called text  and a string 

of m characters (m<=n) called the pattern is given. Here job is to find whether the pattern is present in text or not. 

If we want to find i-the index of the leftmost character of the first matching substring in the  

 

We start matching with the very first character, if a match then only j is incremented and again compared with next 

character of both the strings. If not then I is incremented and j starts from beginning of pattern string. If pattern 

found we return the position from where the pattern began. Pattern is tried to match till n-m elements, later we 

need not try to match as the elements will be lesser than pattern. If it doesn’t match by n-m elements then pattern is 

not matched. 

 

The worst case is Θ(nm). Best case is Θ(m). 


