Lecture Notes on
Analysis and Design of Algorithms
BCS401

Module-2 :Divide and Conquer

© oo N bk wd e

Contents
General method

Recurrence equation

Algorithm: Binary search

Algorithm: Finding the maximum and minimum
Algorithm: Merge sort

Algorithm: Quick sort

Advantages and Disadvantages

Decrease and Conquer Approach

Algorithm: Topological Sort

ADA BCS401

1. General method

Divide and Conguer is one of the best-known general algorithm design echnique. It works
according to the following general plan:
e Given a function to compute on ‘n’ inputs the divide-and-conquer strategy suggests
splitting the inputs into ‘k’ distinct subsets, 1<k<=n, yielding ‘k’ sub problems.
e These sub problems must be solved, and then a method must be found to combine sub
solutions into a solution of the whole.
e If the sub problems are still relatively large, then the divide-and-conquer strategy can
possibly be reapplied.
e Often the sub problems resulting from a divide-and-conquer design are of the same
type as the original problem.For those cases the reapplication of the divide-and-
conquer principle is naturally expressed by a recursive algorithm.

A typical case with k=2is diagrammatically shown below.

Problem | of size n
Sub Problem of size n/2 Sub Problem of size n/2

Solution to sub problem 1 Solution to sub problem 2

v v
v

Solution to the original problem

Control Abstraction for divide and conquer:
Algorithm DAndC(P)

if Small(P) then return S(P);
else

divide P into smaller instances Py, P, ..., B, k > 1;
Apply DAndC to each of these subproblems;
return Combine(DAndC{P,),DAndC(P%),...,.DAndC(F}));

}
}

In the above specification,

e Initially DAndC(P) is invoked, where ‘P’ is the problem to be solved.

e Small (P) is a Boolean-valued function that determines whether the input size is small
enough that the answer can be computed without splitting. If this so, the function S’
is invoked.Otherwise, the problem P is divided into smaller sub problems.These sub
problems Py, P, ...Py are solved by recursive application of DAndC.

e Combine is a function that determines the solution to P using the solutions to the ‘k’
sub problems.

CSE, SVIT 1

ADA BCS401

2. Recurrence equation for Divide and Conquer

If the size of problem ‘p’ is n and the sizes of the ‘k’ sub problems are nj, n,....ny,
respectively, then the computing time of divide and conquer is described by the recurrence
relation T(n) = g(n) 7 small

EL T(ng) + Tng) + - +T(ny) + f(n) otherwise
Where,

e T(n) is the time for divide and conquer method on any input of size n and

e g(n) is the time to compute answer directly for small inputs.

e The function f(n) is the time for dividing the problem ‘p’ and combining the solutions
to sub problems.

For divide and conquer based algorithms that produce sub problems of the same type as the
original problem, it is very natural to first describe them by using recursion.

More generally, an instance of size n can be divided into b instances of size n/b, with a of
them needing to be solved. (Here, a and b are constants; a>=1 and b > 1.). Assuming that
size n is a power of b(i.e. n=b¥), to simplify our analysis, we get the following recurrence for
the running time T(n): (1) "

1) () _{ aT(n/b) + f(n) n

where f(n) is a function that accounts for the time spent on dividing the problem into smaller
ones and on combining their solutions.

1
1

Vol

The recurrence relation can be solved by i) substitution method or by using ii) master
theorem.

1. Substitution Method - This method repeatedly makes substitution for each
occurrence of the function T in the right-hand side until all such occurrences
disappear.

2. Master Theorem - The efficiency analysis of many divide-and-conquer algorithms is
greatly simplified by the master theorem. It states that, in recurrence equation T(n) =
aT(n/b) +f (n), If f ()€ ® (n) where d > 0 then

O (n4) if a < b9,
T(n)yey Om?logn) ifa=>hr?,
O (n'°%) ifa > b9,
Analogous results hold for the O and Q notations, too.
For example, the recurrence for the number of additions A(n) made by thedivide-and-
conquer sum-computation algorithm (see above) on inputs of sizen = 2% is
An)=2An/2) + 1.
Thus, for this example, a =2, b = 2, and d = 0; hence, since a >b",

A(n) e O (n'°8r %) — (%)(ntclgz 2') = (n).

CSE, SVIT 2

ADA

BCS401

Problems on Substitution method & Master theorem to solve the recurrence relation

?pr/ Selwe [f@l(o‘-d!\ua, HQ £ yrrRenl 9w (ahown .
<3

00,‘

< Q\d/

— L‘\’
TY=2 T2y N, T QS :ﬂax-?+ié—bm e d

e

Zolny TWN= zz“r(“/33+n.
. | 0
~afa- T Al 40 = 4 T(G)+an
- Lf[QT(%é>+%]+Q“ = 8'1"(-3—) "\'%n

L)
Ld

- a’i-r@,yr'{n { 1&1%legh
2 &

. - +{uu/| DV'L"(w(e-r“
‘ﬁ«-#; wox imum value 4. =013 E— g

: n
i &\GJ,!" T(:.)ﬁpn X i s (ngﬂ
< vk FEEVY o v IEEH
- Quinleyn

= B (nlegn)

—_—

SoluNow wﬁv«} Wop fe tlheovem:

o' =2y -2, AthY=n=iBC') Dd=]
| ; '

Ao we see fuat c1=b‘l f_z:uj

. A pu coe-2 o(r—avmwam fuaorem. .
T(n) = eCnJ»(ogzn)
TCn) = gCn log n)

o —

Ex@ai® 3.3 gofve by sulstMulon satuod,
A=\ f JO:-‘Q»/ F(n)=¢c

Loln s

= Y_T('—‘ir) -(—C] +C = T(‘Dl(.;) 3¢
=T rByec]te = T +3C

\

CSE, SVIT

ADA BCS401

,—r()chc ¥ 1 & S(Q?J"

o (93 \).{_ { g'\ -C
‘ =-r0 +c.‘(®3L
lA"X"SUW\uA.a_, T() = K Sowal @W‘M

Y= clognt <.
) = © (log,n) .

P

goi Uj\v_g Moy feq Feo nrrn
Hue gl e, MM =cs e(1) =8(n°)
i = d=9,
A a:lod [‘_:.—:3”_}/ €02 o W@u‘\umm W)
2 pled! |
T(n)= © (nd togn)
’I_Cf\):e((@gz.nB .

—_—

premm——

\¢3—3 Colue, Swoununee $2lohion ’
W a=3, b=8, fn)=cn .
Coly: T(MY= &-T(P) ¢en = &(—gfr(%)Jvc% £en
S LAY
=l T(%)-('Q‘Chole(;l'l'(()'e(%l(-&m
- g T(R+3n
kL Ten t 14 VEjerH.
= &' T(?B'\’ . Va 2
o= &\GSL —r< n\ -\—‘QJ'\ Ce n
o T * ch\"ﬂf’

$ o M
Asowm' vy TC) =k (Sowse (oW

) = cnlogn K0 .
= 8 (;“ (6‘3}"/(3

_

CSE, SVIT .

N BCS401

Cofn U.H\Ué Mo kea tueoxem)) A i
;:»L» v b=2 My =Ch = o(n) = 8C =
\‘ &-(— i - ’

| two
ey, get® LEw8d 1 Cone-2 ke taoy e TUO o

() = g (nd (og ")
=8Cn ~(eggﬂ)

p——

/g So\yt Tin)eq- (")+z€h 3

By TOM= AT (L) ¢ en
= 9 [_Ct&r (%—) + b (g_)é] 2 le\hc
n i e it
= S THL) % TR E R

2 g“”%ﬂ 4.8 g i

!
U’
—.‘
/\
J
4+
/\w
:“.
UO
pre
N
I~
:_v

Soln W‘% mog den Tueone?
‘ =9, b=3, F(n) = &0 geQn

S twea auf* ¢ g 84
Tt = (1) »?ﬁc__ﬁ’)

= d=6.

CSE, SVIT

ADA BCS401

G) Selwe T(my-q. T (BNl
) =2 TE)] = 4 TE) A+ (a€)

= o LaT@) +J+ Q@D
=2 . T(2)« (Q+2f()

'
L]
LY

=0,

L o)+ (A ')

n CT(‘) + ﬂ.le,p*‘ |

\A‘VSUM\AJ_ _TC‘)-‘=f
w B A =l
";Qri—l
——
BN

) ‘-—"-—' %

Coln \))Ev«é_ wwo-f-a Yuem v m
= = s (=1~ i
a=%; b=) i ﬂ —_48(“); 9Lr\o) = C!*‘O'

Shoe as b (2> 27) , o S appled

Fen\ = 0(n|°3bq)
= (")
=9 (n)

@ selve TUn) =T(L)+n

lnys T 2
= T(])t L+n
LY Sl een

¥
'

n .Y ,

— rre—A M
(B (B Ea e
121 & logw

CSE, SVIT 6

ADA BCS401

(D) oy,
5 (™) (B
H L | plonr! R0
Mraowe TCO=1/ Lo wuss T &~ 0 L
- (+ar 2 X
res|
R A (rr Al a=l ")
- legaﬂ‘\&__.‘ (3
_ ~ ¢ 20"
_ onea-t = a0l € T

\4—%&. o=\, b=2& Aln)=.n =
/ZH/ \}
Q cuen Q{(aa\ Q | £9)
(Y= 8 CrYet
=6 (n)
/——' \
3. Binary Search

Problem definition:Let a, 1 <i < n be a list of elements that are sorted in non-decreasing
order. The problem is tofind whether a given element x is present in the list or not. If x is
present we have to determine a value j (element’s position) such that a;=X. If X is not in the
list, then j is set to zero.

Solution:Let P = (n, ai...a; , X) denote an arbitrary instance of search problem where n is the
number of elements in the list, a;...ajis the list of elements andx is the key element to be
searched for in the given list.Binary search on the list is done as follows:

Stepl: Pick an index q in the middle range [i, I] i.e. g= (n + 1)/2] and compare x with ag.

Step 2: if X = aql.e key element is equal to mid element, the problem is immediately solved.

Therefore, problem reduces to (g-i, a...aq-1, X).

Step 4: if X >ag,x has to be searched for only in the sub-list ag.1,
reduces to (I-i, ag+1...ai, X).

......

For the above solution procedure, the Algorithm can be implemented as recursive or non-
recursive algorithm.

CSE, SVIT 7

ADA BCS401

Recursive binary search algorithm

int BinSrch(Type all, int i, int 1, Type x)
// Given an array al[i:1] of elements in nondecreasing
// order, 1<=i<=1, determine whether x is present, and
?" if so, return j such that x == aljl; else return 0.
if (1==i) { // If Small(P)
if (x==al[i]) return i;
else return 0;

}
else { // Reduce P into a smaller subproblem.

int mid = (i+1)/2;
if (x == a[mid]) return mid;
else if (x < a[mid]) return BinSrch(a,i,mid-1,x);

else return BinSrch(a,mid+1,1,x);

}

}

Iterative binary search:

int BinSearch(Type a[], int n, Type x)
// Given an array al[1:n] of elements in nondecreasing
// order, n>=0, determine whether x is present, and
ff if so, return j such that x == a[j]; else return 0.
int low = 1, high = n;
while (low <= high){
int mid = (low + high)/2;
if (x < a[mid]) high = mid - 1;
else if (x > a[mid]) low = mid + 1;
else return(mid);

}
return(0) ;
}
Example Let us select the 14 entries

—15,-6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151

place them in afl : 14], and simulate the steps that BinSearch goes through
as it searches for different values of 2. Only the variables low, high, and
mid need to be traced as we simulate the algorithm. We try the following
values for x: 151, —14, and 9 for two successful searches and one unsuccessful
search. Table 3.2 shows the traces of BinSearch on these three inputs. O

CSE, SVIT

ADA BCS401

r =101 low high mid z=—14 low high d
1 14 7 1 14 7
8 14 11 1 6 3
12 14 13 1 2 1
14 14 14 2 2 2
found 2 1 not. found
x =9 low high mid
1 14 7
1 6 3
4 6 5]
found

Analysis

In binary search the basic operation is key comparison. Binary Search can be analyzed with
the best, worst, and average case number of comparisons.The numbers of comparisons for the
recursive and iterative versions of Binary Search are the same, if comparison counting is
relaxed slightly. For Recursive Binary Search, count each pass through the if-then-else block
as one comparison. For Iterative Binary Search, count each pass through the while block as
one comparison.Let us find out how many such key comparison does the algorithm make on
an array of n elements.

Best case —@(1) In the best case, the key is the middle in the array. A constant number of
comparisons (actually just 1) are required.

Worst case - @(log, n) In the worst case, the key does not exist in the array at all. Through
each recursion or iteration of Binary Search, the size of the admissible range is halved. This
halving can be done ceiling(log,n) times. Thus,] logz n | comparisons are required.

Sometimes, in case of the successful search, it may take maximum number of comparisons.
] logz n]. So worst case complexity of successful binary search is ® (logz n).

Average case - @ (log,n) To find the average case, take the sum of the product of number of
comparisons required to find each element and the probability of searching for that element.
To simplify the analysis, assume that no item which is not in array will be searched for, and
that the probabilities of searching for each element are uniform.

successful searches unsuccessful searches
e(1), ©(logn), ©O(logn) O(logn)
best, average, worst best, average, worst

Space Complexity - The space requirements for the recursive and iterative versions of binary
search are different. Iterative Binary Search requires only a constant amount of space, while
Recursive Binary Search requires space proportional to the number of comparisons to
maintain the recursion stack.

Advantages: Efficient on very big list, Can be implemented iteratively/recursively.

Limitations:
e Interacts poorly with the memory hierarchy
e Requires sorted list as an input
¢ Due to random access of list element, needs arrays instead of linked list.

CSE, SVIT 9

ADA BCS401

4. Finding the maximum and minimum

Problem statement:Given a list of n elements, the problem is to find the maximum and
minimum items.

StraightMaxMin: A simple and straight forward algorithm to achieve this is given below.

void StraightMaxMin(Type al[], int n, Type& max, Type& min)
// Set max to the maximum and min to the minimum of a[l:n]

{
max = min = a[1];
for (int i=2; i<=n; i++) {
if (al[i] > max) max = a[i];
if (alil] < min) min = a[i];

x

Explanation:
= StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases.
= By realizing the comparison of a[i]>max is false, improvement in a algorithm can be
done. Hence we can replace the contents of the for loop by,
If(a[i]>Max) then Max = a[i]; Else if (a[i]<min) min=a[i]
= On the average a[i] is > max half the time.So, the avg. no. of comparison is 3n/2-1.

Algorithm based on Divide and Conquer strategy

Let P=(n, a[i],...... ,a [j]) denote an arbitrary instance of the problem. Here ‘n’ is the no. of
elements in the list (a[i].....,a[j]) and we are interested in finding the maximum and minimum
of the list.If the list has more than 2 elements, P has to be divided into smaller instances.

For example, we might divide ‘P’ into the 2 instances,
P1=([n/2],a[1], a[n/2])
P2=(n-[n/2], a[[n/2]+1], ,a[n])

After having divided ‘P’ into 2 smaller sub problems, we can solve them
byrecursivelyinvoking the same divide-and-conquer algorithm.

Algorithm:

void MaxMin(int i, int j, Type& max, Type& min)

// ali:n] is a global array. Parameters i and j are
// integers, 1 <= i <= j <= n. The effect is to set
// max and min to the largest and smallest values in

é/ aki:31, respectively.

if (1 == j) max = min = a[il; // Small(P)

else if (i == j-1) { // Another case of Small(P)
if (ali] < alj]) { max = a[j]; min = alil; }
else { max = a[i]; min aljl; }

);

CSE, SVIT 10

ADA BCS401

else { // If P is not small
// divide P into subproblenms.
// Find where to split the set.
int mid=(i+j)/2; Type max1, min{-:
// Solve the subproblems. ’
MaxMin (i, mid, max, min);
MaxMin(mid+1, j, max1, min1);
// Combine the solutions.
if (max < maxl) max = maxi;
if (min > minl) min = mini;

non

Example:
Suppose we simulate MaxMin on the following nine elements:

ar (1 [21 [3] [4 [5] [6] [7] [8] [9]
22 13 -5 -8 15 60 17 31 47

A good way of keeping track of recursive calls is to build a tree by adding a
node each time a new call is made. For this algorithm each node has four
items of information: 4, j, maez, and min. On the array a[| above, the tree

of recursive calls of MaxMin is as follows

O
1,9,60,—j
& _— T ®
1,5,22,-8 6,9.60,17
~_ e
® _— S~_ @ ® _— T~ 0
1,3,22,-5 4,5,15,-8 6,7,60,17 18,9,47.31

(T ™~ (

o/ TSy \
1,2,22,13 3,3,-5,-5

Analysis - Time Complexity

Now what is the number of element comparisons needed for MaxMin? If
T(n) represents this number, then the resulting recurrence relation is

T([n/2])+T([n/2])+2 n>2
Tn)=< 1 n =2
0 n=1

CSE, SVIT 11

ADA BCS401

When n is a power of two, n = 2% for some positive integer %, then

T(n) = 2T(n/2)+2
2027 (n/4) +2) + 2
AT(n/4) + 4 +2

f

. (3.3
= 2" 1T2) + ¥ ik 1 2
= 28142k 2=3p/2-2

Note that 3n/2 — 2 is the best-, average-. and worst-case number of com-

parisons when n is a power of two.
Compared with the straight forward method (2n-2) this method saves 25% in comparisons.

Space Complexity

Compared to the straight forward method, the MaxMin method requires extra stack space for
i, j, max, min, max1l and minl. Given n elements there will be log.n] + 1 levels of
recursion and we need to save seven values for each recursive call. (6 + 1 for return address).

5. Merge Sort

Merge sort is a perfect example of a successful application of the divide-and conquer
technique. It sorts a given array A [O ... n - 1] by dividing it into two halves A [0 .. n/2]-1]
and A[/2] .. n-1], sorting each of them recursively, and then merging the two smaller sorted
arrays into a single sorted one.

ALGORITHM Mergesort(A[0..n — 1])
/ISorts array A[0..n — 1] by recursive mergesort
/Mnput: An array A[0..n — 1] of orderable elements
[fOutput: Array A[0..n — 1] sorted in nondecreasing order
ifn =1
copy A[0..[n/2] —1]to B|0..|n/2] — 1]
copy A[|n/2]..n — 1] 1o C[0..[n/2] — 1]
Mergesort(B[0..ln/2] —1])
Mergesort(C[0..[n/2] — 1])
Merge(B, C, A) //sce below

The merging of two sorted arrays can be done as follows.

= Two pointers (array indices) are initialized to point to the first elements of the arrays
being merged.

» The elements pointed to are compared, and the smaller of them is added to a new
array being constructed

CSE, SVIT 12

ADA

= After that, the index of the smaller element is incremented to point to its immediate
successor in the array it was copied from. This operation is repeated until one of the
two given arrays is exhausted, and then the remaining elements of the other array are

copied to the end of the new array.

BCS401

ALGORITHM Merge(B[0..p — 1], C[0..q — 1], A[0..p +¢q — 1])
//Merges two sorted arrays into one sorted array
/[Input: Arrays B[0..p — 1]and C[0..q — 1] both sorted

//Output: Sorted array A[0..p + ¢ — 1] of the elements of B and C

i« 0 j«<0: k<0
while/ < pand j < ¢ do
it B[i] = C[/]
Alk] < Bli], i «<i+1
else Alk| < C[j]. j«<j+1
k<—k+1
ifi=p
copy Clj..q — 1]to Alk..p +q — 1]
else copy Bli..p — 1|to Alk..p + g — 1]

Example

The operation of the algorithm on the
list8,3,2,9,7, 1,5, 4is illustrated in

the figure

Analysis

./’ -
’// _
- \‘
P \\ y N
v
A ™, e A
> L1 -
2 29 71 5 #
/ ! fo !

v Y \ \ ¢
| 38 | | 29 | | 17 | | 15 |
\.\ / \\ //'
N N

—
_\‘ I‘/,//
| 122457809 |

Here the basic operationis key comparison. As merge sort execution does not depend on the
order of the data, best case and average case runtime are the same as worst case runtime.

Worst case:During key comparison, neither of the two arrays becomes empty before the
other one contains just one element leads to the worst case of merge sort. Assuming for

CSE, SVIT

13

ADA BCS401

simplicity that total number of elementsn is a power of 2, therecurrence relation for the
number of key comparisons C(n) is

C(n) =2C(2/2) + Cpperge(n) form>1, C(1)=0.

where, Crerge(n) is the number of key comparisons made during the merging stage.

Let us analyze Cperge(n), the number of key comparisons performed during themerging stage.
At each step, exactly one comparison is made, after which the totalnumber of elements in the
two arrays still needing to be processed is reducedby 1. In the worst case, neither of the two
arrays becomes empty before theother one contains just one element (e.g., smaller elements
may come from thealternating arrays).Therefore, for the worst case,Crerge(n) = n —1.
Now,

Coporstin) = 2C porsiitf2) tn—=1 fTormz 1, Cuyppall) =0.

Solving the recurrence equation using master theorem:
Herea=2, b=2,f(n)=n, d=1. Therefore 2 = 2*, case 2 holds in the master theorem

Cuworst(n) = © (n® log n) = ® (n' log n) = ® (n log n)Therefore Cyorst(n) = O (n log n)

Advantages:

e Number of comparisons performed is nearly optimal.

e For large n, the num er of comparisons made by this algorithm in the average case
turns out to be about 0.25n less and hence is also in @(n log n).

e Mergesort will never degrade to O (n)

e Anotheradvantage of mergesort over quicksort and heapsort is its stability. (A sorting
algorithm is said to be stable if two objects with equal keys appear in the same order
in sorted output as they appear in the input array to be sorted.)

Limitations:

e The principal shortcoming of mergesort is the linear amount [O(n)] of extra storage
the algorithm requires. Though merging can be done in-place, the resulting algorithm
is quite complicated and of theoretical interest only.

Variations of merge sort

1. Thealgorithm can be implemented bottom up by merging pairs of the array’s
elements,then merging the sorted pairs, and so on. (If n is not a power of 2, only
slightbookkeeping complications arise.) This avoids the time and space overhead
ofusing a stack to handle recursive calls.

2. We can divide a list to be sortedin more than two parts, sort each recursively, and
then merge them tog ther. Thisscheme, which is particularly useful for sorting files
residing on secondary memorydevices, is called multiway mergesort.

CSE, SVIT 14

ADA BCS401

6. Quick sort

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer
approach. Unlike mergesort, which divides its input elements according to their position in
the array, quicksort divides (or partitions) them according to their value.

A partition is an arrangement of the array’s elements so that all the elements to the left of
some element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are
greater than or equal to it:

A[0]. .. Als — 1] Afs] Als+1]... A[n —1]

-

all are <A[s] all are > A[s]

Obviously, after a partition is achieved, A[s] will be in its final position in thesorted array,
and we can continue sorting the two subarrays to the left and to theright of A[s]
independently (e.g., by the same method).

In quick sort, the entire workhappens in the division stage, with no work required to combine
the solutions tothe subproblems.

ALGORITHM Quicksort(A[l..r])
//[Sorts a subarray by quicksort
//Input: Subarray of array A[0..n — 1], defined by its left and right

I indices / and r
//Output: Subarray A[/..r] sorted in nondecreasing order
ifl <r

s < Partition(A[l..r]) //s is a split position
Quicksort(All..s — 1])
Quicksort(Als + 1..r])

Partitioning

We start by selecting a pivot—an element with respect to whose valuewe are going to divide
the subarray.There are several different strategies forselecting a pivot. We use
thesophisticated method suggested byC.A.R. Hoare, the prominent British computer scientist
who invented quicksort.

Select the subarray’s firstelement: p = A[l].Now scan the subarray from both ends,comparing
the subarray’s elements to the pivot.

» The left-to-right scan, denoted below by index pointer i, starts with the second
element. Since we want elements smaller than the pivot to be in the left part of the
subarray, this scan skips over elements that are smaller than the pivot and stops upon
encountering the first element greater than or equal to the pivot.

= The right-to-left scan, denoted below by index pointer j, starts with the last element of
the subarray. Since we want elements larger than the pivot to be in the right part of the

CSE, SVIT 15

ADA

subarray, this scan skips over elements that are larger than the pivot and stops on
encountering the first element smaller than or equal to the pivot.

After both scans stop, three situations may arise, depending on whether or notthe scanning
indices have crossed.

1. If scanning indices i and j have not crossed, i.e., i< j, we simply exchange A[i] and
A[j] and resume the scans by incrementing | and decrementing j, respectively:

I — —J

p allare<p >p <p allare>p

1 t

2. If the scanning indices have crossed over, i.e., i> j, we will have partitioned the
subarray after exchanging the pivot with A[j]:

—J i —
p allare <p <p | zp allare = p
3. If the scanning indices stop while pointing to the same element, i.e., i = j, the value

they are pointing to must be equal to p. Thus, we have the subarray partitioned, with
the split positions=i=j:

—[=i—

p allare<p =p allare 2 p

We can combine this with the case-2 byexchanging the pivot with A[j] whenever i2j

BCS401

ALGORITHM HoarePartition(A[l..r])

/[Partitions a subarray by Hoare’s algorithm, using the first element as a pivot

/Nnput: Subarray of array A[0..n — 1], defined by its left and right indices | and r (I<r)
/[Output: Partition of A[l..r], with the split position returned as this function’s value

p < A[l]
<1 j<r+1
repeat
repeat i < i + Luntil A[i]> p
repeat j < j — luntil A[j] < p
swap(A[i], A[j])
until / > ;
swap(Al[i], A[j]) //undo last swap when i > j
swap(A[l], A[j])
return ;

Note that index i can go out of the subarray’s bounds in this pseudocode.

CSE, SVIT

16

ADA BCS401

Example: Example of quicksort operation. (a) Array’s transformations with pivotsshown in
bold. (b) Tree of recursive calls to Quicksort with input values land r of subarray bounds and
split position s of a partition obtained.

0 1 2 3 4 5 6 7
. jl-
5 3 1 9 8 2 4 7
i ;
5 3 | 9 8 2z a /
Jl
5 3 1 A 8 2 o 7
i |
5 1 4 8 2 9 7
i i
5 2 1 4 ? ? 9 7 =0, r=7
5 3 1 1 2 g g9 7 s=4
2 3 4 5 8 G 7 / \
i J
2 3 1 4 }IZO, r=3 }I:E}r r=7
2 3 1 4
i I
2 1 3 4
j ; 1":0r r=0 ;22, r=3 ;:5, r=h J'I:?r r=7
2 1 3 4 §=2
1 2 3 4
|
1 lll':21 r:1 ;:3, F’:3
3 4
f i
3 4
4
i i
8 9 7
I i
8 7 9
j i
8 7 a
7 8 g9
7
9
Analysis

Best Case -Here the basic operation is key comparison. Numberof key comparisons made
before a partition is achieved is n + 1 if the scanningindices cross over and n if they coincide.
If all the splits happen in themiddle of corresponding subarrays, we will have the best case.
The number of keycomparisons in the best case satisfies the recurrence,

Civaen) =2C;,...(n/2) ¥n foanz=), C(l)=0

According to the Master Theorem, Cpest(n) €O(n log, n); solving it exactly forn = 2% yields
Chest(n) =nlogz n.

Worst Case — In the worst case, all the splits will be skewed to the extreme: one of thetwo
subarrays will be empty, and the size of the other will be just 1 less than thesize of the
subarray being partitioned. This unfortunate situation will happen, inparticular, for increasing
arrays. Indeed, if A[0..n — 1] is a strictly increasing array and we use A[0] as thepivot, the

CSE, SVIT 17

ADA BCS401

left-to-right scan will stop on A[1] while the right-to-left scan will go allthe way to reach
A[0], indicating the split at position 0:So, after making n + 1 comparisons to get to this
partition and exchanging thepivot A[0] with itself, the algorithm will be left with the strictly
increasing arrayA[1..n — 1] to sort. This sorting of strictly increasing arrays of diminishing
sizes willcontinue until the last one A[n—2.. n—1] has been processed. The total numberof key
comparisons made will be equal to

Cworstt) =+ +n+---+3= /i IL(” +5) 3e OMm).

-

Average Case - Let Ca4(n) be the average number of key comparisons made byquicksort on
arandomly ordered array of size n. A partition can happen in anyposition s (0 < s £ n—1) after
n+lcomparisons are made to achieve the partition.After the partition, the left and right
subarrays will have s and n — 1— s elements,respectively. Assuming that the partition split can

happen in each position s withthe same probability 1/n, we get the following recurrence

relation: 1!
Cang(n) = — Z[(n = Wl el) +gpal— 1 — s)] forn>1,

n
s=0

Cm,g(G)=0, C..1)=0.

“avg \ -/

Its solution, which is much trickier than the worst- and best-case analyses, turnsout to be
Cape(n) ~2nInn ~ 1.39n log, n.

Thus, on the average, quicksort makes only 39% more comparisons than in thebest case.
Moreover, its innermost loop is so efficient that it usually runs faster thanmergesort on
randomly ordered arrays of nontrivial sizes. This certainly justifies the namegiven to the
algorithm by its inventor.

Variations: Because of quicksort’s importance, there have been persistent efforts over
theyears to refine the basic algorithm. Among several improvements discovered
byresearchers are:
= Better pivot selection methods such as randomized quicksort that uses a random
element or the median-of-three method that uses the median of the leftmost,
rightmost, and the middle element of the array
= Switching to insertion sort on very small subarrays (between 5 and 15 elements for
most computer systems) or not sorting small subarrays at all and finishing the
algorithm with insertion sort applied to the entire nearly sorted array
= Modifications of the partitioning algorithm such as the three-way partition into
segments smaller than, equal to, and larger than the pivot

Limitations: 1. It is not stable. 2. It requires a stack to store parameters of subarrays that are
yet to be sorted. 3. WhilePerformance on randomly ordered arrays is known to be sensitive
not only to the implementation details of the algorithm but also to both computer architecture
and data type.

CSE, SVIT 18

ADA BCS401

7. Advantages and Disadvantages of Divide & Conquer

Advantages

1. Parallelism: Divide and conquer algorithms tend to have a lot of inherent parallelism.
Once the division phase is complete, the sub-problems are usually independent and
can therefore be solved in parallel. This approach typically generates more enough
concurrency to keep the machine busy and can be adapted for execution in multi-
processor machines.

2. Cache Performance: divide and conquer algorithms also tend to have good cache
performance. Once a sub-problem fits in the cache, the standard recursive solution
reuses the cached data until the sub-problem has been completely solved.

3. It allows solving difficult and often impossible looking problems like the Tower of
Hanoi. It reduces the degree of difficulty since it divides the problem into sub
problems that are easily solvable, and usually runs faster than other algorithms would.

4. Another advantage to this paradigm is that it often plays a part in finding other
efficient algorithms, and in fact it was the central role in finding the quick sort and
merge sort algorithms.

Disadvantages

5. One of the most common issues with this sort of algorithm is the fact that the
recursion is slow, which in some cases outweighs any advantages of this divide and
conquer process.

6. Another concern with it is the fact that sometimes it can become more complicated
than a basic iterative approach, especially in cases with a large n. In other words, if
someone wanted to add a large amount of numbers together, if they just create a
simple loop to add them together, it would turn out to be a much simpler approach
than it would be to divide the numbers up into two groups, add these groups
recursively, and then add the sums of the two groups together.

7. Another downfall is that sometimes once the problem is broken down into sub
problems, the same sub problem can occur many times. It is solved again. In cases
like these, it can often be easier to identify and save the solution to the repeated sub
problem, which is commonly referred to as memorization.

8. Decrease and Conquer Approach

Decrease-and-conquer is a general algorithm design technique, based on exploiting a
relationship between a solution to a given instance of a problem and a solution to a smaller
instance of the same problem. Once such a relationship is established, it can be exploited
either top down (usually recursively) or bottom up.There are three major variations of
decrease-and-conquer:

1. decrease-by-a-constant, most often by one (e.g., insertion sort)

2. decrease-by-a-constant-factor, most often by the factor of two (e.g., binary search)

3. variable-size-decrease (e.g., Euclid’s algorithm)

CSE, SVIT 19

ADA BCS401

In the decrease-by-a-constant variation, the size of an instance is reducedby the same
constant on each iteration of the algorithm. Typically, this constant is equal to one although
other constant size reductions do happenoccasionally.

Figure: Decrease-(by one)-and-conquer Problem of sizen

technique
Example: a"=a"" x a

Sub Problem
of size n-1

Solution to sub
problem

1 '
v

Solution to the original problem

The decrease-by-a-constant-factor technique suggests reducing a probleminstance by the
same constant factor on each teration of the algorithm. In mostapplications, this constant

factor is equal to two. ,
Problem of size n

Figure: Decrease-(byhalf)-and-conquer
technique. Sub Problem
of size n/2
h 4
Example: Solution to sub
problem
el if 2 is even and
fl . i e | 5 .
a" =1 (@" V% .q ifnisodd,
1 if n =0. Solution to the original problem

Finally, in the variable-size-decrease variety of decrease-and-conquer, thesize-reduction
pattern varies from one iteration of an algorithm to another.

Example: Euclid’salgorithm for computing the greatest common divisor. It is based on the
formula. gcd(m, n) = gcd(n, m mod n).

Though the value of the second argument is always smaller on the right-hand sidethan on the
left-hand side, it decreases neither by a constant nor by a constantfactor.

CSE, SvIT 20

Insertion sort

It is an application for decease-by-one technique to sort an array A[0...n-1]. Everytime the element is

inserted, it is stored in its position. So after every insertion the array remains sorted.

¢ ey
A0l <...<A[l<A[+11<...<Ali—1] | A[i]...Aln—1]

smaller than or equal to A[i] greater than A[]

Iteration of insertion sort: A[i] is inserted in its proper position among the
preceding elements previously sorted.

There are three reasonable alternatives for doing this. First, we can scan the
sorted subarray from left to right until the first element greater than or equal
to A[n — 1] is encountered and then insert A[n — 1] right before that element.
Second, we can scan the sorted subarray from right to left until the first element
smaller than or equal to A[n — 1] is encountered and then insert A[n — 1] right
after that element. These two alternatives are essentially equivalent; usually. it
is the second one that is implemented in practice because it is better for sorted
and almost-sorted arrays (why?). The resulting algorithm is called straight inser-
tion sort or simply insertion sort. The third alternative is to use binary search to

find an appropriate position for A[n — 1] in the sorted portion of
th :
resulting algorithm is called binary insertion sore, V- ' he array. The

ALGORITHM [nsertionSort(A[0..n — 1])
//Sorts a given array by insertion sort
//Input: An array A[0..n — 1] of n orderable elemfants
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori < 1ton—1do
v « Alil
jei-1
while j > 0 and A[j] > v do
Alj +1] « Al]
J w=j =1
Alj+1] «v

The number of key comparisons for such an input is

n—1i-1 n-—1 (n—bn R
Coors(®) =) Y 1=) i= Hhg =R is the worst case.
i=1j=0 i=l

For sorted array, the number of key comparisons is

n—1

Chest(n) = Zl =n-1¢e O(n).

i=1

And average case is Cayg(n) =n’\4 € O(n?)

9. Topological Sort

Background: A directed graph, or digraph for short, is a graph with directions specified for
all its edges. The adjacency matrix and adjacency lists are the two principal means of
representing a digraph.Ther are only two notable differences between undirected and
directed graphs in representing them: (1) the adjacency matrix of a directed graph does not
have to be symmetric; (2) an edge in a directed graph has just one (not wo) corresponding
nodes in the digraph’s adjacency lists.

Depth-first search and breadth-first search are principal traversal algorithms for traversing
digraphs as well, but the structure of corresponding forests can be more complex than for
undirected graphs. Thus, even for the simple example of Figure, the depth-first search forest
(Figure b) exhibits all four types of edges possible in a DFS forest of a directed graph:

e treeedges (ab, bc, de),

e Dback edges (ba) from vertices to their ancestors,

o forward edges (ac) from vertices to their descendants in the tree other than their

children, and
e cross edges (dc), whichare none of the aforementioned types.

(a) (b)

(a) Digraph. (b) DFS forest of the digraph for the DFS traversal started at a.

Note that a back edge in a DFS forest of a directed graph can connect a vertexto its parent.
Whether or not it is the case, the presence of a back edge indicatesthat the digraph has a
directed cycle. A directed cycle in a digraph is a sequenceof three or more of its vertices that
starts and ends with the same vertex and inwhich every vertex is connected to its immediate
predecessor by an edge directedfrom the predecessor to the successor. For example, a, b, a is
a directed cycle in the digraph in Figure given above. Conversely, if a DFS forest of a
digraph has no backedges, the digraph is a dag, an acronym for directed acyclic graph.

Motivation for topological sorting: Consider a set of five required @ @
courses {C1, C2, C3, C4,C5} a part-time student has to take in some @‘
degree program. The courses can betaken in any order as long as the

following course prerequisites are met: C1 andC2 have no prerequisites, @' @

C3 requires C1 and C2, C4 requires C3, and C5 requiresC3 and C4. The
student can take only one course per term. In which order shouldthe student take the

ADA BCS401

courses?The situation can be modeled by a digraph in which vertices represent courses and
directed edges indicate prerequisite requirements.

In terms of this digraph, the uestion is whether we can list its vertices in such an order that
for every edge in the graph, the vertex where the edge starts is listed before the vertex where
the edge ends. In other words, can you find such an ordering of this digraph’s vertices? This
problem is called topological sorting.

Topological Sort: For topological sorting to be possible, a digraph in question must be a
DAG. i.e., if a digraph has nodirected cycles, the topological sorting problem for it has a
solution.

There are two efficient algorithms that both verify whether a digraph is a dag and, if it is,
produce an ordering of vertices that solves the topological sortingproblem.The first one is
based on depth-first search; the second is based on a direct application of the decrease-by-one
technique.

Topological Sorting based on DES
Method

1. Perform a DFS traversal and note the order in which vertices become dead-ends

2. Reversing this order yields a solution to the topological sorting problem, provided, of
course, no back edge has been encountered during the traversal. If a back edge has
been encountered, the digraph is not a DAG, and topological sorting of its vertices is
impossible.

Illustration

a) Digraph for which the topological sorting problem needs to be solved.

b) DFS traversal stack w th the subscript numbers indicating the popping off order.

c) Solution to the problem. Here we have drawn the edges of the digraph, and they all
point from left to right as the problem’s statement requires. It is a convenient way to
check visually the correctness of a solution to an instance of the topological sorting
problem.

@ @ C5, The popping-off order:
@ C4, C5h,C4,C3,C1,C2
C3; The topologically sorted list:

c2) co C1, C2s C2 C1—»C3—»C4—C5
N s
(a) (b) (c)

Topoloaical Sorting using decrease-and-conquer technigue

Method: The algorithm is based on a direct implementation of the decrease-(byone)-and-
conquer technique:

CSE, SvIT 23

ADA BCS401

1. Repeatedly, identify in a remaining digraph a source, which is a vertex with no
incoming edges, and delete it along with all the edges outgoing from it. (If there are
several sources, break the tie arbitrarily. If there are none, stop because the problem
cannot be solved.)

2. The order in which the vertices are deleted yields a solution to the topological sorting
problem.

Ilustration - Illustration of the source-removal algorithm for the topological sorting problem
IS given here. On each iteration, a vertex with no incoming edges is deleted from the digraph.

€ &

9 @
@ delete C1 ® delete C2 ®
€2 ‘@ - €2 ‘® ‘ ‘®

delete C3 @ delete C4 delete C5

€9 €9

The solution obtained isC1,C2, C3, C4, C5H

Note: The solution obtained by the source-removal algorithm is different from the one
obtained by the DFS-based algorithm. Both of them are correct, of course; the topological
sorting problem may have several alternative solutions.

Depth first search:

There are three reasonable alternatives for doing this. First, we can scan the
sorted subarray from left to right until the first element greater than or equal
to A[n — 1] is encountered and then insert A[n — 1] right before that element.
Second, we can scan the sorted subarray from right to left until the first element
smaller than or equal to A[n — 1] is encountered and then insert Aln — 1] nght
after that element. These two alternatives are essentially equivalent: usuallvo. it
is the second one that is implemented in practice because it is bette£ for sorted
and almost-sorted arrays (why?). The resulting algorithm is called straight inser-
tion sort or simply insertion sort. The third alternative is to use binary search to
find an appropriate position for Aln — 1] in the sorted portion of the varra The
fcfsulting filgorithm is callcicni anary (n.s_ertion. sort. We ask you to i'ﬁ[’lemei} o

CSE, SVIT 24

. It is also very useful to accompany a depth-first search traversal by construct-

ing the so-called depth-first search Jorest. The traversal’s starting vertex serves

as the root of the first tree in such a forest. Whenever a new unvisited vertex is

reached for the first time, it is attached as a child to the vertex from which it is

being reached. Such an edge is called a tree edge because the set of all such edges

forms a forest. The algorithm may also encounter an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree).
Such an edge is called a back edge because it connects a vertex to its ancestor,
other than the parent, in the depth-first search forest. Figure provides an exam-
ple of a depth-first search traversal, with the traversal’s stack and corresponding
depth-first search forest shown as well.

€6, 2

bs;3 jioz
d31 fas gs
€25 hg,9
4,6 97,10

FS traversal. (a) Graph. (b) Traversal's stack (the first sub-
z indi i ich a vertex was visited, i.e., pushed
number indicates the order in whicl s visited,
szrtftthe stack; the second one indicates the order in Yvhnch it became a
Sead—end i.e., popped off the stack). (c) DFS forest (with the tree edges

shown with solid iines an

Example of a D

d the back edges shown with dashed lines).

ALGORITHM algorithm

DFS(G)
/Mmplements a depth-first search traversal of a given graph
/Mnput: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count < 0
for each vertex vin V do

if v is marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v by a path
//and numbers them in the order they are encountered
/lvia global variable count

count < count + 1; mark v with count
for each vertex w in V adjacent to v do
if w is marked with 0

dfs(w)

Breadth first search:

If depth-first search is a traversal for the brave (the algorithm goes as far from
“home” as it can), breadth-first search is a traversal for the cautious. It proceeds in
a concentric manner by visiting first all the vertices that are adjacent to a starting
vertex, then all unvisited vertices two edges apart from it, and so on, until all
the vertices in the same connected component as the starting vertex are visited.
If there still remain unvisited vertices, the algorithm has to be restarted at an
arbitrary vertex of another connected component of the graph.

It is convenient to use a queue (note the difference from depth-first search!)
to trace the operation of breadth-first search. The queue is initialized with the
traversal’s starting vertex, which is marked as visited. On each iteration, the algo-
rithm identifies all unvisited vertices that are adjacent to the front vertex, marks
them as visited, and adds them to the queue; after that, the front vertex is removed
from the queue. ’

Similarly to a DFS traversal, it is useful to accompany a BFS traversal by con-
structing the so-called breadth-first search forest. The traversal’s starting vertex
serves as the roaot of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, the vertex is attached as a child to the vertex it is being
reached from with an edge called a tree edge. If an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree) is
encountered, the edge is noted as a cross edge. Figure provides an example
of a breadth-first search traversal, with the traversal’s queue and corresponding
breadth-first search forest shown.

8 Cy dy 84 s bg o 7,\\/\—\
g7 ha g o © N
| O ® ©
J 1
(a) (b) (©)

Example of a BFS traversal. (a) Graph. (b) Traversal's queue, with the num-
bers indicating the order in which the vertices were visited, i.e., added to
(or removed from) the queue. (c) BFS forest (with the tree adges shown
with solid lines and the cross edges shown with dotted lines).

ALGORITHM BFS(G)

//fmplements a breadth-first search traversal of a given graph
/Mnput: Graph G = (V, E) v
/lOutput: Graph G with its vertices marked with consecutive integers
/lin the order they have been visited by the BFS traversal

mark each vertex in V with 0 as a mark of being “unvisited”
count « 0

for each vertex vin V do
if v is marked with 0
bfs(v)
bfs(v)
/Ivisits all the unvisited vertices connected to vertex v by a path

/land assigns them the numbers in the order they are visited
/Ivia global variable count :

count < count +1; mark v with count and initialize a queue with v
while the queue is not empty do
for each vertex w in V adjacent to the front vertex do
if w is marked with 0
count « count +1; mark w with count
add w to the queue
remove the front vertex from the queue

Applications of Topological Sorting

e Instruction scheduling in program compilation
e Cell evaluation ordering in spreadsheet formulas,
e Resolving symbol dependencies in linkers.

*k*k

