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1. Introduction to Greedy method 

1.1 General method 

The greedy method is the straight forward design technique applicable to variety of 

applications. 

The greedy approach suggests constructing a solution through a sequence of steps, each 

expanding a partially constructed solution obtained so far, until a complete solution to the 

problem is reached. On each step the choice made must be: 

 feasible, i.e., it has to satisfy the problem’s constraints 

 locally optimal, i.e., it has to be the best local choice among all feasible choices 

available on that step 

 irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm 

As a rule, greedy algorithms are both intuitively appealing and simple. Given an optimization 

problem, it is usually easy to figure out how to proceed in a greedy manner, possibly after 

considering a few small instances of the problem. What is usually more difficult is to prove 

that a greedy algorithm yields an optimal solution (when it does). 

 

 

 

 

1.2. Coin Change Problem 

Problem Statement: Given coins of several denominations find out a way to give a customer 

an amount with fewest number of coins. 

Example: if denominations are 1,5,10, 25 and 100 and the change required is 30, the solutions 

are, 

Amount : 30 

Solutions : 3 x 10  ( 3 coins ), 6 x 5 ( 6 coins ) 

1 x 25 + 5 x 1 ( 6 coins ) 1 x 25 + 1 x 5 ( 2 coins ) 

The last solution is the optimal one as it gives us change only with 2 coins. 
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Solution for coin change problem using greedy algorithm is very intuitive and called as 

cashier’s algorithm. Basic principle is: At every iteration for search of a coin, take the 

largest coin which can fit into remain amount to be changed at that particular time. At 

the end you will have optimal solution. 

 

1.3. Knapsack Problem (Fractional knapsack problem) 

 
Consider the following instance of the knapsack problem: 

n=3, m=20, (p1, p2, p3) =(25, 24, 15), (w1, w2, w3) =(18, 15, 10) 
 

There are several greedy methods to obtain the feasible solutions. Three are discussed here 

a) At each step fill the knapsack with the object with largest profit - If the object under 

consideration does not fit, then the fraction of it is included to fill the knapsack. This method 

does not result optimal solution. As per this method the solution to the above problem is as 

follows; 

Select Item-1 with profit p1=25, here w1=18, x1=1. Remaining capacity = 20-18 = 2 

Select Item-2 with profit p1=24, here w2=15, x1=2/15. Remaining capacity = 0 

Total profit earned = 28.2. 

Therefore optimal solution is (x1, x2, x3) = (1, 2/15, 0) with profit = 28.2 

b) At each step fill the object with smallest weight 

Select Item-3 with profit p1=15, here w1=10, x3=1. Remaining capacity = 20-10 = 10 

Select Item-2 with profit p1=24, here w2=15, x1=10/15. Remaining capacity = 0 

Total profit earned = 31. 

Optimal solution using this method is (x1, x2, x3) = (0, 2/3, 1) with profit = 31 

Note: Optimal solution is not guaranteed using method a and b 
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c) At each step include the object with maximum profit/weight ratio 

Select Item-2 with profit p1=24, here w2=15, x1=1. Remaining capacity = 20-15=5 

Select Item-3 with profit p1=15, here w1=10, x1=5/10. Remaining capacity = 0 

Total profit earned = 31.5 

Therefore, optimal solution is (x1, x2, x3) = (0, 1, 1/2) with profit = 31.5 

This greedy approach always results optimal solution. 

Algorithm: The algorithm given below assumes that the objects are sorted in non-increasing 

order of profit/weight ratio 

 

 
Analysis: 

Disregarding the time to initially sort the object, each of the above strategies use O(n) time, 

 
0/1 Knapsack problem 

 

 

Note: The greedy approach to solve 0/1 knapsack problem does not necessarily yield an optimal 

solution 
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1.4. Job sequencing with deadlines 
 

 

 
 

 

The greedy strategy to solve job sequencing problem is, “At each time select the job that that 

satisfies the constraints and gives maximum profit. i.e consider the jobs in the non-increasing 

order of the pi’s” 

By following this procedure, we get the 3
rd

 solution in the example 4.3. It can be proved that, 

this greedy strategy always results optimal solution 

 

High level description of job sequencing algorithm 
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Algorithm/Program 4.6: Greedy algorithm for sequencing unit time jobs with deadlines and 

profits 

 

 
Analysis: 

 
Fast Job Scheduling Algorithm 
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Algorithm: Fast Job Scheduling is shown in next page 

Analysis 

Algorithm: Fast Job Scheduling 
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Problem: Find solution generated by job sequencing problem with deadlines for 7 jobs given 

profits 3, 5, 20, 18, 1, 6, 30 and deadlines 1, 3, 4, 3, 2, 1, 2 respectively. 

Solution: Given 

 

 
 

Sort the jobs as per the decreasing order of profit 
 

 J7 J3 J4 J6 J2 J1 J5 

Profit 30 20 18 6 5 3 1 

Deadline 2 4 3 1 3 1 2 

Maximum deadline is 4. Therefore create 4 slots. Now allocate jobs to highest slot, starting 

from the job of highest profit 

Select Job 7 – Allocate to slot-2 

Select Job 3 – Allocate to slot-4 

Select Job 4 – Allocate to slot-3 

Select Job 6 – Allocate to slot-1       Total profit earned is = 30+20+18+6=74 

 
Problem: What is the solution generated by job sequencing when n = 5, (P1, P2, P3, P4, P5) 

= (20, 15, 10, 5, 1), (d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3) 

Solution 

The Jobs are already sorted according to decreasing order of profit. 

Maximum deadline is 3. Therefore create 4 slots. Allocate jobs to highest slot, starting from 

the job of highest profit 

Select Job 1 – Allocate to slot-2 

Select Job 2 – Allocate to slot-1 as 2 is already filled 

Select Job 3 –Slot-2 &1 are already filled. Cannot be allocated. 

Select Job 4 – Allocate to slot-3 

Total profit earned is = 20+15+5=40 

 J1 J2 J3 J4 J5 J6 J7 

Profit 3 5 20 18 1 6 30 

Deadline 1 3 4 3 2 1 2 

 

Slot 1 2 3 4 

Job J6 J7 J4 J3 

 

Slot 1 2 3 

Job J2 J1 J4 
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2. Minimum cost spanning trees 

Definition: A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree) 

that contains all the vertices of the graph. A minimum spanning tree of a weighted connected 

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the 

sum of the weights on all its edges. The minimum spanning tree problem is the problem of 

finding a minimum spanning tree for a given weighted connected graph. 

 
 

 

2.1. Prim’s Algorithm 

Prim's algorithm constructs a minimum spanning tree through a sequence of expanding sub- 

trees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from 

the set V of the graph's vertices. On each iteration it expands the current tree in the greedy 

manner by simply attaching to it the nearest vertex not in that tree. The algorithm stops after 

all the graph's vertices have been included in the tree being constructed. Since the algorithm 

expands a tree by exactly one vertex on each of its iterations, the total number of such iterations 

is n - 1, where n is the number of vertices in the graph. The tree generated by the algorithm is 

obtained as the set of edges. 

 

 
Correctness: Prim’s algorithm always yields a minimum spanning tree. 
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Example: An example of prim’s algorithm is shown below. 

The parenthesized labels of a vertex in the middle column 

indicate the nearest tree vertex and edge weight; selected 

vertices and edges are shown in bold. 

 

 

Tree vertices Remaining vertices Illustration 

 
Analysis of Efficiency 

The efficiency of Prim’s algorithm depends on the data structures chosen for the graph itself 

and for the priority queue of the set V − VT whose vertex priorities are the distances to the 

nearest tree vertices. 

1. If a graph is represented by its weight matrix and the priority queue is implemented as 

an unordered array, the algorithm’s running time will be in Θ(|V|2). Indeed, on each 
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of the |V| − 1iterations, the array implementing the priority queue is traversed to find 

and delete the minimum and then to update, if necessary, the priorities of the remaining 

vertices. 

We can implement the priority queue as a min-heap. (A min-heap is a complete binary tree in 

which every element is less than or equal to its children.) Deletion of the smallest element from 

and insertion of a new element into a min-heap of size n are O(log n) operations. 

2. If a graph is represented by its adjacency lists and the priority queue is implemented 

as a min-heap, the running time of the algorithm is in O(|E| log |V |). 

This is because the algorithm performs |V| − 1 deletions of the smallest element and makes |E| 

verifications and, possibly, changes of an element’s priority in a min-heap of size not exceeding 

|V|. Each of these operations, as noted earlier, is a O(log |V|) operation. Hence, the running 

time of this implementation of Prim’s algorithm is in 

(|V| − 1+ |E|) O (log |V |) = O(|E| log |V |) because, in a connected graph, |V| − 1≤ |E|. 

 
2.2. Kruskal’s Algorithm 

Background: Kruskal's algorithm is another greedy algorithm for the minimum spanning tree 

problem that also always yields an optimal solution. It is named Kruskal's algorithm, after 

Joseph Kruskal. Kruskal's algorithm looks at a minimum spanning tree for a weighted 

connected graph G = (V, E) as an acyclic sub graph with |V | - 1 edges for which the sum of 

the edge weights is the smallest. Consequently, the algorithm constructs a minimum spanning 

tree as an expanding sequence of sub graphs, which are always acyclic but are not necessarily 

connected on the intermediate stages of the algorithm. 

Working: The algorithm begins by sorting the graph's edges in non-decreasing order of their 

weights. Then, starting with the empty subgraph, it scans this sorted list adding the next edge 

on the list to the current sub graph if such an inclusion does not create a cycle and simply 

skipping the edge otherwise. 
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The fact that ET ,the set of edges composing a minimum spanning tree of graph G actually a 

tree in Prim's algorithm but generally just an acyclic sub graph in Kruskal's algorithm. 

Kruskal’s algorithm is not simpler because it has to check whether the addition of the next 

edge to the edges already selected would create a cycle. 

We can consider the algorithm's operations as a progression through a series of forests 

containing all the vertices of a given graph and some of its edges. The initial forest consists of 

|V| trivial trees, each comprising a single vertex of the graph. The final forest consists of a 

single tree, which is a minimum spanning tree of the graph. On each iteration, the algorithm 

takes the next edge (u, v) from the sorted list of the graph's edges, finds the trees containing the 

vertices u and v, and, if these trees are not the same, unites them in a larger tree by adding the 

edge (u, v). 

Analysis of Efficiency 

The crucial check whether two vertices belong to the same tree can be found out using union- 

find algorithms. 

Efficiency of Kruskal’s algorithm is based on the time needed for sorting the edge weights of 

a given graph. Hence, with an efficient sorting algorithm, the time efficiency of Kruskal's 

algorithm will be in O (|E| log |E|). 

 

Illustration 

An example of Kruskal’s algorithm is shown below. The 

selected edges are shown in bold. 
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3. Single source shortest paths 

Single-source shortest-paths problem is defined as follows. For a given vertex called the 

source in a weighted connected graph, the problem is to find shortest paths to all its other 

vertices. The single-source shortest-paths problem asks for a family of paths, each leading from 

the source to a different vertex in the graph, though some paths may, of course, have edges in 

common. 

3.1. Dijkstra's Algorithm 

Dijkstra's Algorithm is the best-known algorithm for the single-source shortest-paths problem. 

This algorithm is applicable to undirected and directed graphs with nonnegative weights only. 

Working - Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of their 

distance from a given source. 

 First, it finds the shortest path from the source to a vertex nearest to it, then to a second 

nearest, and so on. 

 In general, before its i
th

 iteration commences, the algorithm 

has already identified the shortest paths to i-1 other vertices 

nearest to the source. These vertices, the source, and the 

edges of the shortest paths leading to them from the source 

form a subtree Ti of the given graph shown in the figure. 

 Since all the edge weights are nonnegative, the next vertex 

nearest to the source can be found among the vertices adjacent to the vertices of Ti. The 
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set of vertices adjacent to the vertices in Ti can be referred to as "fringe vertices"; they 

are the candidates from which Dijkstra's algorithm selects the next vertex nearest to the 

source. 

 To identify the i
th

 nearest vertex, the algorithm computes, for every fringe vertex u, the 

sum of the distance to the nearest tree vertex v (given by the weight of the edge (v, u)) 

and the length d., of the shortest path from the source to v (previously determined by 

the algorithm) and then selects the vertex with the smallest such sum. The fact that it 

suffices to compare the lengths of such special paths is the central insight of Dijkstra's 

algorithm. 

 To facilitate the algorithm's operations, we label each vertex with two labels. 

o The numeric label d indicates the length of the shortest path from the source to this 

vertex found by the algorithm so far; when a vertex is added to the tree, d indicates 

the length of the shortest path from the source to that vertex. 

o The other label indicates the name of the next-to-last vertex on such a path, i.e., 

the parent of the vertex in the tree being constructed. (It can be left unspecified for 

the sources and vertices that are adjacent to none of the current tree vertices.) 

With such labeling, finding the next nearest vertex u* becomes a simple task of finding 

a fringe vertex with the smallest d value. Ties can be broken arbitrarily. 

 After we have identified a vertex u* to be added to the tree, we need to perform two 

operations: 

o Move u* from the fringe to the set of tree vertices. 

o For each remaining fringe vertex u that is connected to u* by an edge of weight 

w(u*, u) such that du*+ w(u*, u) <du, update the labels of u by u* and du*+ w(u*, 

u), respectively. 

 
Illustration: An example of Dijkstra's algorithm is 

shown below. The next closest vertex is shown in 

bold. (see the figure in next page) 

 
The shortest paths (identified by following nonnumeric labels backward from a destination 

vertex in the left column to the source) and their lengths (given by numeric labels of the tree 

vertices) are as follows: 

The pseudocode of Dijkstra’s algorithm is given below. Note that in the following pseudocode, 

VT contains a given source vertex and the fringe contains the vertices adjacent to it after 

iteration 0 is completed. 
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Analysis: 

The time efficiency of Dijkstra’s algorithm depends on the data structures used for 

implementing the priority queue and for representing an input graph itself. 
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Efficiency is Θ(|V|2) for graphs represented by their weight matrix and the priority queue 

implemented as an unordered array. 

For graphs represented by their adjacency lists and the priority queue implemented as a min- 

heap, it is in O (|E| log |V| ) 

Applications 

 Transportation planning and packet routing in communication networks, including the 

Internet 

 Finding shortest paths in social networks, speech recognition, document formatting, 

robotics, compilers, and airline crew scheduling. 

4. Optimal Tree problem 

Background: 

Suppose we have to encode a text that comprises characters from some n-character alphabet 

by assigning to each of the text's characters some sequence of bits called the codeword. There 

are two types of encoding: Fixed-length encoding, Variable-length encoding 

Fixed-length encoding: This method assigns to each character a bit string of the same length 

m (m >= log2n). This is exactly what the standard ASCII code does. 

One way of getting a coding scheme that yields a shorter bit string on the average is based on 

the old idea of assigning shorter code-words to more frequent characters and longer code-words 

to less frequent characters. 

Variable-length encoding: This method assigns code-words of different lengths to different 

characters, introduces a problem that fixed-length encoding does not have. Namely, how can 

we tell how many bits of an encoded text represent the first character? (or, more generally, the 

i
th

) To avoid this complication, we can limit ourselves to prefix-free (or simply prefix) codes. 

In a prefix ode, no code word is a prefix of a codeword of another character. Hence, with such 

an encoding, we can simply scan a bit string until we get the first group of bits that is a 

codeword for some character, replace these bits by this character, and repeat this operation 

until the bit string's end is reached. 

If we want to create a binary prefix code for some alphabet, it is natural to associate the 

alphabet's characters with leaves of a binary tree in which all the left edges are labelled by 0 

and all the right edges are labelled by 1 (or vice versa). The codeword of a character can then 

be obtained by recording the labels on the simple path from the root to the character's leaf. 

Since there is no simple path to a leaf that continues to another leaf, no codeword can be a 

prefix of another codeword; hence, any such tree yields a prefix code. 

Among the many trees that can be constructed in this manner for a given alphabet with known 

frequencies of the character occurrences, construction of such a tree that would assign shorter 

bit strings to high-frequency characters and longer ones to low-frequency characters can be 

done by the following greedy algorithm, invented by David Huffman. 
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4.1 Huffman Trees and Codes 

Huffman's Algorithm 

Step 1: Initialize n one-node trees and label them with the characters of the alphabet. Record 

the frequency of each character in its tree's root to indicate the tree's weight. (More generally, 

the weight of a tree will be equal to the sum of the frequencies in the tree's leaves.) 

Step 2: Repeat the following operation until a single tree is obtained. Find two trees with the 

smallest weight. Make them the left and right subtree of a new tree and record the sum of their 

weights in the root of the new tree as its weight. 

A tree constructed by the above algorithm is called a Huffmantree. It defines-in the manner 

described-a Huffman code. 

Example: Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence 

frequencies in a text made up of 

these symbols: 

The Huffman tree construction 

for the above problem is shown below: 
 

The resulting codewords are as follows: 
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Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD. 

With the occurrence frequencies given and the code word lengths obtained, the average 

number of bits per symbol in this code is 

2 *0.35 + 3 *0.1+ 2 *0.2 + 2 *0.2 + 3 *0.15 = 2.25. 

Had we used a fixed-length encoding for the same alphabet, we would have to use at least 3 

bits per each symbol. Thus, for this example, Huffman’s code achieves the compression ratio 

(a standard measure of a compression algorithm’s effectiveness) of (3−2.25)/3*100%= 25%. 

In other words, Huffman’s encoding of the above text will use 25% less memory than its fixed- 

length encoding. 

 

 

5. Transform and Conquer Approach 

We call this general technique transform-and-conquer because these methods work as two- 

stage procedures. First, in the transformation stage, the problem’s instance is modified to be, 

for one reason or another, more amenable to solution. Then, in the second or conquering stage, 

it is solved. 

There are three major variations of this idea that differ by what we transform a given instance 

to (Figure 6.1): 

 Transformation to a simpler or more convenient instance of the same problem—we call 

it instance simplification. 

 Transformation to a different representation of the same instance—we call it 

representation change. 

 Transformation to an instance of a different problem for which an algorithm is already 

available—we call it problem reduction. 

 

5.1. Heaps 

Heap is a partially ordered data structure that is especially suitable for implementing priority 

queues. Priority queue is a multiset of items with an orderable characteristic called an item’s 

priority, with the following operations: 
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 finding an item with the highest (i.e., largest) priority 

 deleting an item with the highest priority 

 adding a new item to the multiset 

Notion of the Heap 

Definition: A heap can be defined as a binary tree with keys assigned to its nodes, one key per 

node, provided the following two conditions are met: 

1. The shape property—the binary tree is essentially complete (or simply complete), 

i.e., all its levels are full except possibly the last level, where only some rightmost leaves 

may be missing. 

2. The parental dominance or heap property—the key in each node is greater than or 

equal to the keys in its children. 

Illustration: The illustration of the definition of heap is shown bellow: only the left most tree 

is heap. The second one is not a heap, because the tree’s shape property is violated. The left 

child of last subtree cannot be empty. And the third one is not a heap, because the parental 

dominance fails for the node with key 5. 

 
Properties of Heap 

1. There exists exactly one essentially complete binary tree with n nodes. Its height is 

equal to ⌊𝑙𝑜𝑔2𝑛⌋ 

2. The root of a heap always contains its largest element. 

3. A node of a heap considered with all its descendants is also a heap. 

4. A heap can be implemented as an array by recording its elements in the top down, left- 

to-right fashion. It is convenient to store the heap’s elements in positions 1 through n 

of such an array, leaving H[0] either unused or putting there a sentinel whose value is 

greater than every element in the heap. In such a representation, 

a. the parental node keys will be in the first ⌊n/2⌋. positions of the array, while the 

leaf keys will occupy the last ⌊n/2⌋ positions; 

b. the children of a key in the array’s parental position i (1≤ i ≤⌊𝑛/2⌋) will be in 

positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i (2 

≤ i≤ n) will be in position ⌊𝑛/2⌋. 
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Heap and its array representation 

Thus, we could also define a heap as an array H[1..n] in which every element in position i in 

the first half of the array is greater than or equal to the elements in positions 2i and 2i + 1, i.e., 

H[i]≥max {H [2i], H [2i + 1]} for i= 1. . .⌊𝑛/2⌋ 

 
Constructions of Heap - There are two principal alternatives for constructing Heap. 

1) Bottom-up heap construction 2) Top-down heap construction 

 

Bottom-up heap construction: 

The bottom-up heap construction algorithm is illustrated bellow. It initializes the essentially 

complete binary tree with n nodes by placing keys in the order given and then “heapifies” the 

tree as follows. 

 Starting with the last parental node, the algorithm checks whether the parental 

dominance holds for the key in this node. If it does not, the algorithm exchanges the 

node’s key K with the larger key of its children and checks whether the parental 

dominance holds for K in its new position. This process continues until the parental 

dominance for K is satisfied. (Eventually, it has to because it holds automatically for 

any key in a leaf.) 

 After completing the “heapification” of the subtree rooted at the current parental node, 

the algorithm proceeds to do the same for the node’s immediate predecessor. 

 The algorithm stops after this is done for the root of the tree. 
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Illustration 

Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double headed arrows show 

key comparisons verifying the parental dominance. 

 

 

 

Analysis of efficiency - bottom up heap construction algorithm: 

Assume, for simplicity, that n = 2
k
− 1 so that a heap’s tree is full, i.e., the largest possible 

number of nodes occurs on each level. Let h be the height of the tree. 

According to the first property of heaps in the list at the beginning of the section, h=⌊𝑙𝑜𝑔2𝑛⌋ 

or just ⌊𝑙𝑜𝑔2(𝑛 + 1)⌋= k − 1 for the specific values of n we are considering. 

Each key on level I of the tree will travel to the leaf level h in the worst case of the heap 

construction algorithm. Since moving to the next level down requires two comparisons—one 
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to find the larger child and the other to determine whether the exchange is required—the total 

number of key comparisons involving a key on level I will be 2(h − i). 

Therefore, the total number of key comparisons in the worst case will be 
 

 

where the validity of the last equality can be proved either by using the closed-form formula 

for the sum   or by mathematical induction on h. 

Thus, with this bottom-up algorithm, a heap of size n can be constructed with fewer than 2n 

comparisons. 

Top-down heap construction algorithm: 

It constructs a heap by successive insertions of a new key into a previously constructed heap. 

1. First, attach a new node with key K in it after the last leaf of the existing heap. 

2. Then shift K up to its appropriate place in the new heap as follows. 

a. Compare K with its parent’s key: if the latter is greater than or equal to K, stop (the 

structure is a heap); otherwise, swap these two keys and compare K with its new 

parent. 

b. This swapping continues until K is not greater than its last parent or it reaches root. 

Obviously, this insertion operation cannot require more key comparisons than the heap’s 

height. Since the height of a heap with n nodes is about log2n, the time efficiency of insertion 

is in O(log n). 

Illustration of inserting a new key: Inserting a new key (10) into the 

heap is constructed bellow. The new key is shifted up via a swap with its 

parents until it is not larger than its parents (or is in the root). 

 

 

 

 

 
 

Delete an item from a heap: Deleting the root’s key from a heap can be done with the 

following algorithm: 

Maximum Key Deletion from a heap 

1. Exchange the root’s key with the last key K of the heap. 

2. Decrease the heap’s size by 1. 

3. “Heapify” the smaller tree by sifting K down the tree exactly in the same way we did it 

in the bottom-up heap construction algorithm. That is, verify the parental dominance 
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Illustration 

for K: if it holds, we are done; if not, swap K with the larger of its children and repeat 

this operation until the parental dominance condition holds for K in its new position. 
 

 

The efficiency of deletion is determined by the number of key comparisons needed to 

“heapify” the tree after the swap has been made and the size of the tree is decreased by 1.Since 

this cannot require more key comparisons than twice the heap’s height, the time efficiency of 

deletion is in O (log n) as well. 

 

5.2. Heap Sort 

Heapsort - an interesting sorting algorithm is discovered byJ. W. J. Williams. This is a two- 

stage algorithm that works as follows. 

Stage 1 (heap construction): Construct a heap for a given array. 

Stage 2 (maximum deletions): Apply the root-deletion operation n−1 times to the 

remaining heap. 

As a result, the array elements are eliminated in decreasing order. But since under the array 

implementation of heaps an element being deleted is placed last, the resulting array will be 

exactly the original array sorted in increasing order. 

Heap sort is traced on a specific input is shown below: 
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Analysis of efficiency: Since we already know that the heap construction stage of the algorithm 

is in O(n), we have to investigate just the time efficiency of the second stage. For the number 

of key comparisons, C(n), needed for eliminating the root keys from the heaps of diminishing 

sizes from n to 2, we get the following inequality: 

 

This means that C(n) ∈ O(n log n) for the second stage of heapsort. For both stages, we get 

O(n) + O(n log n) = O(n log n). A more detailed analysis shows that the time efficiency of 

heapsort is, in fact, in Θ(n log n) in both the worst and average cases. Thus, heapsort’s time 

efficiency falls in the same class as that of mergesort. 

Heapsort is in-place, i.e., it does not require any extra storage. Timing experiments on random 

files show that heapsort runs more slowly than quicksort but can be competitive with mergesort. 

***** 


