

Module-3: Greedy Method

Lecture Notes on

Analysis and Design of Algorithms

BCS401

Contents

1. Introduction to Greedy method

1.1. General method,

1.2. Coin Change Problem

1.3. Knapsack Problem

1.4. Job sequencing with deadlines

2. Minimum cost spanning trees:

2.1. Prim’s Algorithm,

2.2. Kruskal’s Algorithm

3. Single source shortest paths

3.1. Dijkstra's Algorithm

4. Optimal Tree problem:

4.1. Huffman Trees and Codes

5. Transform and Conquer Approach:

5.1. Heaps

5.2. Heap Sort

ADA BCS401

CSE, SVIT 1

1. Introduction to Greedy method

1.1 General method

The greedy method is the straight forward design technique applicable to variety of

applications.

The greedy approach suggests constructing a solution through a sequence of steps, each

expanding a partially constructed solution obtained so far, until a complete solution to the

problem is reached. On each step the choice made must be:

 feasible, i.e., it has to satisfy the problem’s constraints

 locally optimal, i.e., it has to be the best local choice among all feasible choices

available on that step

 irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm

As a rule, greedy algorithms are both intuitively appealing and simple. Given an optimization

problem, it is usually easy to figure out how to proceed in a greedy manner, possibly after

considering a few small instances of the problem. What is usually more difficult is to prove

that a greedy algorithm yields an optimal solution (when it does).

1.2. Coin Change Problem

Problem Statement: Given coins of several denominations find out a way to give a customer

an amount with fewest number of coins.

Example: if denominations are 1,5,10, 25 and 100 and the change required is 30, the solutions

are,

Amount : 30

Solutions : 3 x 10 (3 coins), 6 x 5 (6 coins)

1 x 25 + 5 x 1 (6 coins) 1 x 25 + 1 x 5 (2 coins)

The last solution is the optimal one as it gives us change only with 2 coins.

ADA BCS401

CSE, SVIT 2

Solution for coin change problem using greedy algorithm is very intuitive and called as

cashier’s algorithm. Basic principle is: At every iteration for search of a coin, take the

largest coin which can fit into remain amount to be changed at that particular time. At

the end you will have optimal solution.

1.3. Knapsack Problem (Fractional knapsack problem)

Consider the following instance of the knapsack problem:

n=3, m=20, (p1, p2, p3) =(25, 24, 15), (w1, w2, w3) =(18, 15, 10)

There are several greedy methods to obtain the feasible solutions. Three are discussed here

a) At each step fill the knapsack with the object with largest profit - If the object under

consideration does not fit, then the fraction of it is included to fill the knapsack. This method

does not result optimal solution. As per this method the solution to the above problem is as

follows;

Select Item-1 with profit p1=25, here w1=18, x1=1. Remaining capacity = 20-18 = 2

Select Item-2 with profit p1=24, here w2=15, x1=2/15. Remaining capacity = 0

Total profit earned = 28.2.

Therefore optimal solution is (x1, x2, x3) = (1, 2/15, 0) with profit = 28.2

b) At each step fill the object with smallest weight

Select Item-3 with profit p1=15, here w1=10, x3=1. Remaining capacity = 20-10 = 10

Select Item-2 with profit p1=24, here w2=15, x1=10/15. Remaining capacity = 0

Total profit earned = 31.

Optimal solution using this method is (x1, x2, x3) = (0, 2/3, 1) with profit = 31

Note: Optimal solution is not guaranteed using method a and b

ADA BCS401

CSE, SVIT 3

c) At each step include the object with maximum profit/weight ratio

Select Item-2 with profit p1=24, here w2=15, x1=1. Remaining capacity = 20-15=5

Select Item-3 with profit p1=15, here w1=10, x1=5/10. Remaining capacity = 0

Total profit earned = 31.5

Therefore, optimal solution is (x1, x2, x3) = (0, 1, 1/2) with profit = 31.5

This greedy approach always results optimal solution.

Algorithm: The algorithm given below assumes that the objects are sorted in non-increasing

order of profit/weight ratio

Analysis:

Disregarding the time to initially sort the object, each of the above strategies use O(n) time,

0/1 Knapsack problem

Note: The greedy approach to solve 0/1 knapsack problem does not necessarily yield an optimal

solution

ADA BCS401

CSE, SVIT 4

1.4. Job sequencing with deadlines

The greedy strategy to solve job sequencing problem is, “At each time select the job that that

satisfies the constraints and gives maximum profit. i.e consider the jobs in the non-increasing

order of the pi’s”

By following this procedure, we get the 3
rd

 solution in the example 4.3. It can be proved that,

this greedy strategy always results optimal solution

High level description of job sequencing algorithm

ADA BCS401

CSE, SVIT 5

Algorithm/Program 4.6: Greedy algorithm for sequencing unit time jobs with deadlines and

profits

Analysis:

Fast Job Scheduling Algorithm

ADA BCS401

CSE, SVIT 6

Algorithm: Fast Job Scheduling is shown in next page

Analysis

Algorithm: Fast Job Scheduling

ADA BCS401

CSE, SVIT 7

Problem: Find solution generated by job sequencing problem with deadlines for 7 jobs given

profits 3, 5, 20, 18, 1, 6, 30 and deadlines 1, 3, 4, 3, 2, 1, 2 respectively.

Solution: Given

Sort the jobs as per the decreasing order of profit

 J7 J3 J4 J6 J2 J1 J5

Profit 30 20 18 6 5 3 1

Deadline 2 4 3 1 3 1 2

Maximum deadline is 4. Therefore create 4 slots. Now allocate jobs to highest slot, starting

from the job of highest profit

Select Job 7 – Allocate to slot-2

Select Job 3 – Allocate to slot-4

Select Job 4 – Allocate to slot-3

Select Job 6 – Allocate to slot-1 Total profit earned is = 30+20+18+6=74

Problem: What is the solution generated by job sequencing when n = 5, (P1, P2, P3, P4, P5)

= (20, 15, 10, 5, 1), (d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3)

Solution

The Jobs are already sorted according to decreasing order of profit.

Maximum deadline is 3. Therefore create 4 slots. Allocate jobs to highest slot, starting from

the job of highest profit

Select Job 1 – Allocate to slot-2

Select Job 2 – Allocate to slot-1 as 2 is already filled

Select Job 3 –Slot-2 &1 are already filled. Cannot be allocated.

Select Job 4 – Allocate to slot-3

Total profit earned is = 20+15+5=40

 J1 J2 J3 J4 J5 J6 J7

Profit 3 5 20 18 1 6 30

Deadline 1 3 4 3 2 1 2

Slot 1 2 3 4

Job J6 J7 J4 J3

Slot 1 2 3

Job J2 J1 J4

ADA BCS401

CSE, SVIT 8

2. Minimum cost spanning trees

Definition: A spanning tree of a connected graph is its connected acyclic subgraph (i.e., a tree)

that contains all the vertices of the graph. A minimum spanning tree of a weighted connected

graph is its spanning tree of the smallest weight, where the weight of a tree is defined as the

sum of the weights on all its edges. The minimum spanning tree problem is the problem of

finding a minimum spanning tree for a given weighted connected graph.

2.1. Prim’s Algorithm

Prim's algorithm constructs a minimum spanning tree through a sequence of expanding sub-

trees. The initial subtree in such a sequence consists of a single vertex selected arbitrarily from

the set V of the graph's vertices. On each iteration it expands the current tree in the greedy

manner by simply attaching to it the nearest vertex not in that tree. The algorithm stops after

all the graph's vertices have been included in the tree being constructed. Since the algorithm

expands a tree by exactly one vertex on each of its iterations, the total number of such iterations

is n - 1, where n is the number of vertices in the graph. The tree generated by the algorithm is

obtained as the set of edges.

Correctness: Prim’s algorithm always yields a minimum spanning tree.

ADA BCS401

CSE, SVIT 9

Example: An example of prim’s algorithm is shown below.

The parenthesized labels of a vertex in the middle column

indicate the nearest tree vertex and edge weight; selected

vertices and edges are shown in bold.

Tree vertices Remaining vertices Illustration

Analysis of Efficiency

The efficiency of Prim’s algorithm depends on the data structures chosen for the graph itself

and for the priority queue of the set V − VT whose vertex priorities are the distances to the

nearest tree vertices.

1. If a graph is represented by its weight matrix and the priority queue is implemented as

an unordered array, the algorithm’s running time will be in Θ(|V|2). Indeed, on each

ADA BCS401

CSE, SVIT 10

of the |V| − 1iterations, the array implementing the priority queue is traversed to find

and delete the minimum and then to update, if necessary, the priorities of the remaining

vertices.

We can implement the priority queue as a min-heap. (A min-heap is a complete binary tree in

which every element is less than or equal to its children.) Deletion of the smallest element from

and insertion of a new element into a min-heap of size n are O(log n) operations.

2. If a graph is represented by its adjacency lists and the priority queue is implemented

as a min-heap, the running time of the algorithm is in O(|E| log |V |).

This is because the algorithm performs |V| − 1 deletions of the smallest element and makes |E|

verifications and, possibly, changes of an element’s priority in a min-heap of size not exceeding

|V|. Each of these operations, as noted earlier, is a O(log |V|) operation. Hence, the running

time of this implementation of Prim’s algorithm is in

(|V| − 1+ |E|) O (log |V |) = O(|E| log |V |) because, in a connected graph, |V| − 1≤ |E|.

2.2. Kruskal’s Algorithm

Background: Kruskal's algorithm is another greedy algorithm for the minimum spanning tree

problem that also always yields an optimal solution. It is named Kruskal's algorithm, after

Joseph Kruskal. Kruskal's algorithm looks at a minimum spanning tree for a weighted

connected graph G = (V, E) as an acyclic sub graph with |V | - 1 edges for which the sum of

the edge weights is the smallest. Consequently, the algorithm constructs a minimum spanning

tree as an expanding sequence of sub graphs, which are always acyclic but are not necessarily

connected on the intermediate stages of the algorithm.

Working: The algorithm begins by sorting the graph's edges in non-decreasing order of their

weights. Then, starting with the empty subgraph, it scans this sorted list adding the next edge

on the list to the current sub graph if such an inclusion does not create a cycle and simply

skipping the edge otherwise.

ADA BCS401

CSE, SVIT 11

The fact that ET ,the set of edges composing a minimum spanning tree of graph G actually a

tree in Prim's algorithm but generally just an acyclic sub graph in Kruskal's algorithm.

Kruskal’s algorithm is not simpler because it has to check whether the addition of the next

edge to the edges already selected would create a cycle.

We can consider the algorithm's operations as a progression through a series of forests

containing all the vertices of a given graph and some of its edges. The initial forest consists of

|V| trivial trees, each comprising a single vertex of the graph. The final forest consists of a

single tree, which is a minimum spanning tree of the graph. On each iteration, the algorithm

takes the next edge (u, v) from the sorted list of the graph's edges, finds the trees containing the

vertices u and v, and, if these trees are not the same, unites them in a larger tree by adding the

edge (u, v).

Analysis of Efficiency

The crucial check whether two vertices belong to the same tree can be found out using union-

find algorithms.

Efficiency of Kruskal’s algorithm is based on the time needed for sorting the edge weights of

a given graph. Hence, with an efficient sorting algorithm, the time efficiency of Kruskal's

algorithm will be in O (|E| log |E|).

Illustration

An example of Kruskal’s algorithm is shown below. The

selected edges are shown in bold.

ADA BCS401

CSE, SVIT 12

3. Single source shortest paths

Single-source shortest-paths problem is defined as follows. For a given vertex called the

source in a weighted connected graph, the problem is to find shortest paths to all its other

vertices. The single-source shortest-paths problem asks for a family of paths, each leading from

the source to a different vertex in the graph, though some paths may, of course, have edges in

common.

3.1. Dijkstra's Algorithm

Dijkstra's Algorithm is the best-known algorithm for the single-source shortest-paths problem.

This algorithm is applicable to undirected and directed graphs with nonnegative weights only.

Working - Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of their

distance from a given source.

 First, it finds the shortest path from the source to a vertex nearest to it, then to a second

nearest, and so on.

 In general, before its i
th

 iteration commences, the algorithm

has already identified the shortest paths to i-1 other vertices

nearest to the source. These vertices, the source, and the

edges of the shortest paths leading to them from the source

form a subtree Ti of the given graph shown in the figure.

 Since all the edge weights are nonnegative, the next vertex

nearest to the source can be found among the vertices adjacent to the vertices of Ti. The

ADA BCS401

CSE, SVIT 13

set of vertices adjacent to the vertices in Ti can be referred to as "fringe vertices"; they

are the candidates from which Dijkstra's algorithm selects the next vertex nearest to the

source.

 To identify the i
th

 nearest vertex, the algorithm computes, for every fringe vertex u, the

sum of the distance to the nearest tree vertex v (given by the weight of the edge (v, u))

and the length d., of the shortest path from the source to v (previously determined by

the algorithm) and then selects the vertex with the smallest such sum. The fact that it

suffices to compare the lengths of such special paths is the central insight of Dijkstra's

algorithm.

 To facilitate the algorithm's operations, we label each vertex with two labels.

o The numeric label d indicates the length of the shortest path from the source to this

vertex found by the algorithm so far; when a vertex is added to the tree, d indicates

the length of the shortest path from the source to that vertex.

o The other label indicates the name of the next-to-last vertex on such a path, i.e.,

the parent of the vertex in the tree being constructed. (It can be left unspecified for

the sources and vertices that are adjacent to none of the current tree vertices.)

With such labeling, finding the next nearest vertex u* becomes a simple task of finding

a fringe vertex with the smallest d value. Ties can be broken arbitrarily.

 After we have identified a vertex u* to be added to the tree, we need to perform two

operations:

o Move u* from the fringe to the set of tree vertices.

o For each remaining fringe vertex u that is connected to u* by an edge of weight

w(u*, u) such that du*+ w(u*, u) <du, update the labels of u by u* and du*+ w(u*,

u), respectively.

Illustration: An example of Dijkstra's algorithm is

shown below. The next closest vertex is shown in

bold. (see the figure in next page)

The shortest paths (identified by following nonnumeric labels backward from a destination

vertex in the left column to the source) and their lengths (given by numeric labels of the tree

vertices) are as follows:

The pseudocode of Dijkstra’s algorithm is given below. Note that in the following pseudocode,

VT contains a given source vertex and the fringe contains the vertices adjacent to it after

iteration 0 is completed.

ADA BCS401

CSE, SVIT 14

Analysis:

The time efficiency of Dijkstra’s algorithm depends on the data structures used for

implementing the priority queue and for representing an input graph itself.

ADA BCS401

CSE, SVIT 15

Efficiency is Θ(|V|2) for graphs represented by their weight matrix and the priority queue

implemented as an unordered array.

For graphs represented by their adjacency lists and the priority queue implemented as a min-

heap, it is in O (|E| log |V|)

Applications

 Transportation planning and packet routing in communication networks, including the

Internet

 Finding shortest paths in social networks, speech recognition, document formatting,

robotics, compilers, and airline crew scheduling.

4. Optimal Tree problem

Background:

Suppose we have to encode a text that comprises characters from some n-character alphabet

by assigning to each of the text's characters some sequence of bits called the codeword. There

are two types of encoding: Fixed-length encoding, Variable-length encoding

Fixed-length encoding: This method assigns to each character a bit string of the same length

m (m >= log2n). This is exactly what the standard ASCII code does.

One way of getting a coding scheme that yields a shorter bit string on the average is based on

the old idea of assigning shorter code-words to more frequent characters and longer code-words

to less frequent characters.

Variable-length encoding: This method assigns code-words of different lengths to different

characters, introduces a problem that fixed-length encoding does not have. Namely, how can

we tell how many bits of an encoded text represent the first character? (or, more generally, the

i
th

) To avoid this complication, we can limit ourselves to prefix-free (or simply prefix) codes.

In a prefix ode, no code word is a prefix of a codeword of another character. Hence, with such

an encoding, we can simply scan a bit string until we get the first group of bits that is a

codeword for some character, replace these bits by this character, and repeat this operation

until the bit string's end is reached.

If we want to create a binary prefix code for some alphabet, it is natural to associate the

alphabet's characters with leaves of a binary tree in which all the left edges are labelled by 0

and all the right edges are labelled by 1 (or vice versa). The codeword of a character can then

be obtained by recording the labels on the simple path from the root to the character's leaf.

Since there is no simple path to a leaf that continues to another leaf, no codeword can be a

prefix of another codeword; hence, any such tree yields a prefix code.

Among the many trees that can be constructed in this manner for a given alphabet with known

frequencies of the character occurrences, construction of such a tree that would assign shorter

bit strings to high-frequency characters and longer ones to low-frequency characters can be

done by the following greedy algorithm, invented by David Huffman.

ADA BCS401

CSE, SVIT 16

4.1 Huffman Trees and Codes

Huffman's Algorithm

Step 1: Initialize n one-node trees and label them with the characters of the alphabet. Record

the frequency of each character in its tree's root to indicate the tree's weight. (More generally,

the weight of a tree will be equal to the sum of the frequencies in the tree's leaves.)

Step 2: Repeat the following operation until a single tree is obtained. Find two trees with the

smallest weight. Make them the left and right subtree of a new tree and record the sum of their

weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffmantree. It defines-in the manner

described-a Huffman code.

Example: Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence

frequencies in a text made up of

these symbols:

The Huffman tree construction

for the above problem is shown below:

The resulting codewords are as follows:

ADA BCS401

CSE, SVIT 17

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.

With the occurrence frequencies given and the code word lengths obtained, the average

number of bits per symbol in this code is

2 *0.35 + 3 *0.1+ 2 *0.2 + 2 *0.2 + 3 *0.15 = 2.25.

Had we used a fixed-length encoding for the same alphabet, we would have to use at least 3

bits per each symbol. Thus, for this example, Huffman’s code achieves the compression ratio

(a standard measure of a compression algorithm’s effectiveness) of (3−2.25)/3*100%= 25%.

In other words, Huffman’s encoding of the above text will use 25% less memory than its fixed-

length encoding.

5. Transform and Conquer Approach

We call this general technique transform-and-conquer because these methods work as two-

stage procedures. First, in the transformation stage, the problem’s instance is modified to be,

for one reason or another, more amenable to solution. Then, in the second or conquering stage,

it is solved.

There are three major variations of this idea that differ by what we transform a given instance

to (Figure 6.1):

 Transformation to a simpler or more convenient instance of the same problem—we call

it instance simplification.

 Transformation to a different representation of the same instance—we call it

representation change.

 Transformation to an instance of a different problem for which an algorithm is already

available—we call it problem reduction.

5.1. Heaps

Heap is a partially ordered data structure that is especially suitable for implementing priority

queues. Priority queue is a multiset of items with an orderable characteristic called an item’s

priority, with the following operations:

ADA BCS401

CSE, SVIT 18

 finding an item with the highest (i.e., largest) priority

 deleting an item with the highest priority

 adding a new item to the multiset

Notion of the Heap

Definition: A heap can be defined as a binary tree with keys assigned to its nodes, one key per

node, provided the following two conditions are met:

1. The shape property—the binary tree is essentially complete (or simply complete),

i.e., all its levels are full except possibly the last level, where only some rightmost leaves

may be missing.

2. The parental dominance or heap property—the key in each node is greater than or

equal to the keys in its children.

Illustration: The illustration of the definition of heap is shown bellow: only the left most tree

is heap. The second one is not a heap, because the tree’s shape property is violated. The left

child of last subtree cannot be empty. And the third one is not a heap, because the parental

dominance fails for the node with key 5.

Properties of Heap

1. There exists exactly one essentially complete binary tree with n nodes. Its height is

equal to ⌊𝑙𝑜𝑔2𝑛⌋

2. The root of a heap always contains its largest element.

3. A node of a heap considered with all its descendants is also a heap.

4. A heap can be implemented as an array by recording its elements in the top down, left-

to-right fashion. It is convenient to store the heap’s elements in positions 1 through n

of such an array, leaving H[0] either unused or putting there a sentinel whose value is

greater than every element in the heap. In such a representation,

a. the parental node keys will be in the first ⌊n/2⌋. positions of the array, while the

leaf keys will occupy the last ⌊n/2⌋ positions;

b. the children of a key in the array’s parental position i (1≤ i ≤⌊𝑛/2⌋) will be in

positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i (2

≤ i≤ n) will be in position ⌊𝑛/2⌋.

ADA BCS401

CSE, SVIT 19

Heap and its array representation

Thus, we could also define a heap as an array H[1..n] in which every element in position i in

the first half of the array is greater than or equal to the elements in positions 2i and 2i + 1, i.e.,

H[i]≥max {H [2i], H [2i + 1]} for i= 1. . .⌊𝑛/2⌋

Constructions of Heap - There are two principal alternatives for constructing Heap.

1) Bottom-up heap construction 2) Top-down heap construction

Bottom-up heap construction:

The bottom-up heap construction algorithm is illustrated bellow. It initializes the essentially

complete binary tree with n nodes by placing keys in the order given and then “heapifies” the

tree as follows.

 Starting with the last parental node, the algorithm checks whether the parental

dominance holds for the key in this node. If it does not, the algorithm exchanges the

node’s key K with the larger key of its children and checks whether the parental

dominance holds for K in its new position. This process continues until the parental

dominance for K is satisfied. (Eventually, it has to because it holds automatically for

any key in a leaf.)

 After completing the “heapification” of the subtree rooted at the current parental node,

the algorithm proceeds to do the same for the node’s immediate predecessor.

 The algorithm stops after this is done for the root of the tree.

ADA BCS401

CSE, SVIT 20

Illustration

Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double headed arrows show

key comparisons verifying the parental dominance.

Analysis of efficiency - bottom up heap construction algorithm:

Assume, for simplicity, that n = 2
k
− 1 so that a heap’s tree is full, i.e., the largest possible

number of nodes occurs on each level. Let h be the height of the tree.

According to the first property of heaps in the list at the beginning of the section, h=⌊𝑙𝑜𝑔2𝑛⌋

or just ⌊𝑙𝑜𝑔2(𝑛 + 1)⌋= k − 1 for the specific values of n we are considering.

Each key on level I of the tree will travel to the leaf level h in the worst case of the heap

construction algorithm. Since moving to the next level down requires two comparisons—one

ADA BCS401

CSE, SVIT 21

to find the larger child and the other to determine whether the exchange is required—the total

number of key comparisons involving a key on level I will be 2(h − i).

Therefore, the total number of key comparisons in the worst case will be

where the validity of the last equality can be proved either by using the closed-form formula

for the sum or by mathematical induction on h.

Thus, with this bottom-up algorithm, a heap of size n can be constructed with fewer than 2n

comparisons.

Top-down heap construction algorithm:

It constructs a heap by successive insertions of a new key into a previously constructed heap.

1. First, attach a new node with key K in it after the last leaf of the existing heap.

2. Then shift K up to its appropriate place in the new heap as follows.

a. Compare K with its parent’s key: if the latter is greater than or equal to K, stop (the

structure is a heap); otherwise, swap these two keys and compare K with its new

parent.

b. This swapping continues until K is not greater than its last parent or it reaches root.

Obviously, this insertion operation cannot require more key comparisons than the heap’s

height. Since the height of a heap with n nodes is about log2n, the time efficiency of insertion

is in O(log n).

Illustration of inserting a new key: Inserting a new key (10) into the

heap is constructed bellow. The new key is shifted up via a swap with its

parents until it is not larger than its parents (or is in the root).

Delete an item from a heap: Deleting the root’s key from a heap can be done with the

following algorithm:

Maximum Key Deletion from a heap

1. Exchange the root’s key with the last key K of the heap.

2. Decrease the heap’s size by 1.

3. “Heapify” the smaller tree by sifting K down the tree exactly in the same way we did it

in the bottom-up heap construction algorithm. That is, verify the parental dominance

ADA BCS401

CSE, SVIT 22

Illustration

for K: if it holds, we are done; if not, swap K with the larger of its children and repeat

this operation until the parental dominance condition holds for K in its new position.

The efficiency of deletion is determined by the number of key comparisons needed to

“heapify” the tree after the swap has been made and the size of the tree is decreased by 1.Since

this cannot require more key comparisons than twice the heap’s height, the time efficiency of

deletion is in O (log n) as well.

5.2. Heap Sort

Heapsort - an interesting sorting algorithm is discovered byJ. W. J. Williams. This is a two-

stage algorithm that works as follows.

Stage 1 (heap construction): Construct a heap for a given array.

Stage 2 (maximum deletions): Apply the root-deletion operation n−1 times to the

remaining heap.

As a result, the array elements are eliminated in decreasing order. But since under the array

implementation of heaps an element being deleted is placed last, the resulting array will be

exactly the original array sorted in increasing order.

Heap sort is traced on a specific input is shown below:

ADA BCS401

CSE, SVIT 23

Analysis of efficiency: Since we already know that the heap construction stage of the algorithm

is in O(n), we have to investigate just the time efficiency of the second stage. For the number

of key comparisons, C(n), needed for eliminating the root keys from the heaps of diminishing

sizes from n to 2, we get the following inequality:

This means that C(n) ∈ O(n log n) for the second stage of heapsort. For both stages, we get

O(n) + O(n log n) = O(n log n). A more detailed analysis shows that the time efficiency of

heapsort is, in fact, in Θ(n log n) in both the worst and average cases. Thus, heapsort’s time

efficiency falls in the same class as that of mergesort.

Heapsort is in-place, i.e., it does not require any extra storage. Timing experiments on random

files show that heapsort runs more slowly than quicksort but can be competitive with mergesort.
