Lecture Notes on
Analysis and Design of Algorithms
BCS401

Module-4 : Dynamic Programming

Contents

1. Introduction to Dynamic Programming
1.1. General method with Examples
1.2. Multistage Graphs
2. Transitive Closure:
2.1. Warshall’s Algorithm
3. All Pairs Shortest Paths:
3.1. Floyd's Algorithm
4. Knapsack problem
Bellman-Ford Algorithm
6. Travelling Sales Person problem

o

ADA BCS401

1. Introduction to Dynamic Programming

Dynamic programming is a technique for solving problems with overlapping subproblems.
Typically, these subproblems arise from a recurrence relating a given problem’s solution to
solutions of its smaller subproblems. Rather than solving overlapping subproblems again and
again, dynamic programming suggests solving each of the smaller subproblems only once
and recording the results in a table from which a solution to the original problem can then be
obtained. [From T1]

The Dynamic programming can be used when the solution to a problem can be viewed as the
result of sequence of decisions. [From T2]. Here are some examples.

Example 1 [Knapsack] The solution to the knapsack problem

can be viewed as the result of a sequence of decisions. We have to
decide the values of ;.1 <1 < n. First we make a decision on ;. then on
29, then on z3, and so on. An optimal sequence of decisions maximizes the
objective function Y p,x,. (It also satisfies the constraints > w,z; < m and
0<z;<]) O

Example 2 The files &y, 9. and x3 are three sorted files of length 30, 20,
and 10 records each. Merging x; and xy requires 50 record moves. Merging
the result with x3 requires another 60 moves. The total nuber of record
moves required to merge the three files this way is 110. If, instead, we first
merge o and x3 (taking 30 moves) and then) (taking 60 moves), the total
record moves made is only 90. Hence, the second merge pattern is faster
than the first.

An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair
third, and so on. An optimal sequence of decisions is a least-cost sequence.

Example 3 [Shortest path] One way to find a shortest path from vertex
1 to vertex 7 1n a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex j
is reached. An optimal sequence of decisions is one that results in a path of
least length. a

Example 4 [Shortest path] Suppose we wish to find a shortest path from
vertex 1 to vertex j. Let A; be the vertices adjacent from vertex 2. Which of
the vertices in A; should be the second vertex on the path? There is no way
to make a decision at this time and guarantee that future decisions leading
to an optimal sequence can be made. If on the other hand we wish to find
a shortest path from vertex i to all other vertices in G, then at each step, a
correct decision can be made O

CSE, SVIT 1

ADA BCS401

One way to solve problems for which it is not possible to make a sequence
of stepwise decisions leading to an optimal decision sequence is to try all pos-
sible decision sequences. We could enumerate all decision sequences and then
pick out the best. But the time and space requirements may be prohibitive.
Dynamic programming often drastically reduces the amount of enumeration
by avoiding the enumeration of some decision sequences that cannot possibly
be optimal. In dynamic programming an optimal sequence of decisions is
obtained by making explicit appeal to the principle of optimnality.

Definition 5.1 [Principle of optimality] The principle of optimality states
that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first
decision.]

Thus, the essential difference between the greedy method and dynamic
programming is that in the greedy method only one decision sequence is
ever generated. In dynamic programming, many decision sequences may be
generated. However, sequences containing suboptimal subsequences cannot
be optimal (if the principle of optimality holds) and so will not (as far as
possible) be generated.

Example 5.5 [Shortest path] Consider the shortest-path problem of Exam-
ple 5.3. Assume that i,7;,1%5....,1x, 7 is a shortest path from i to 7. Starting
with the initial vertex 2, a decision has been made to go to vertex ¢;. Fol-
lowing this decision, the problem state is defined by vertex 7; and we need
to find a path from 7; to 7. It is clear that the sequence i,i9,... .1k, 7 must
constitute a shortest 7, to j path. If not, let 7;,r,7,....7,,7 be a shortest
i1 to j path. Then i,iy,7ry, - +,74,j 18 an 7 to j path that is shorter than the
path 7.2y.19....,1,7. Therefore the principle of optimality applies for this
problem. a

Example 5.6 [0/1 knapsack] The (/1 knapsack problem is similar to the
knapsack problem of Section 4.2 except that the z;’s are restricted to have
a value of either 0 or 1. Using KNAP(I. j,y) to represent the problem

Maximize 3 << pi;
subject t0 3", wiz; <y (5.1)
ri=00r 1, I<i<}j

the knapsack problem is KNAP(L.7,m). Let y.y9..... Yn be an optimal
sequence of 0/1 values for z,xy,...,z,. respectively. If y; = 0. then
99, YBan oo g Yy, must constitute an optimal sequence for the problem KNADP(2,
n, m). If it does not. then y;.y....,yn is not an optimal sequence for
KNAP(L.n,m). If y3 = 1. then ya,...,y, must be an optimal sequence
for the problem KNAP(2,n2,m — wy). If it isn’t, then there is another 0/1
sequence zz, z3....,2p such that 3>, wizi <m—w; and Y yc;«p, pizi >

> o<i<n PiYi- Hence, the sequence y),2.23....,2, 18 a sequence for (5.1)
with greater value. Again the principle of optimality applies. a

CSE, SVIT 2

ADA BCS401

Example 5.7 [Shortest path] Let A; be the set of vertices adjacent to vertex
t. For each vertex k € A, let I'x be a shortest path from k to j. Then, a
shortest 7 to j path is the shortest of the paths {i. x|k € A;}.)

Example 5.8 [0/1 knapsack] Let g;(y) be the value of an optimal solution
to KNAP(7 + 1.n,y). Clearly, go(m) is the value of an optimal solution to
KNAP(1,n.m). The possible decisions for z; are 0 and 1 (D = {0.1}).
From the principle of optimality it follows that

go{m) = max {gi(m), gi(m —wy) + p1} (5.2)
]

While the principle of optimality has been stated only with respect to
the initial state and decision, it can be applied equally well to intermediate
states and decisions. The next two examples show how this can be done.

Example 5.9 [Shortest path] Let k be an intermediate vertex on a shortest
i to j path i,1;,92,.... k. p1.p2....,J. The paths i,%;..... kand k.py..... 7
must, respectively. be shortest ¢ to £ and k to j paths. a

Example 5.10 [0/1 knapsack] Let 1,y2,...,y, be an optimal solution to
KNAP(1,7n,m). Then, for each 7, 1 < j < mn, y1,...,y;, and yj11,...,yn
must be optimal solutions to the problems KNAP(1, 7, Zcici w;y;) and
KNAP(j + L, n,m— 37 <;j<; wiy:) respectively. This observation allows us to
generalize (5.2) to

gi(y) = max {gi+1(y), gi+1(y — wis1) + pis1} (5.3)

The recursive application of the optimality principle results in a recur-
rence equation of type (5.3). Dynamic programming algorithms solve this
recurrence to obtain a solution to the given problem instance. The recur-
rence (5.3) can be solved using the knowledge g, (y) = 0 for all y > 0 and
gn(y) = —oco for y < 0. From gy (y), one can obtain g, (y) using (5.3) with
i = n— 1. Then, using g, 1(y), one can obtain g,_-(y). Repeating in this
way, one can determine g;(y) and finally go(m) using (5.3) with ¢ = 0.

1.2 Multistage Graphs

A multistage graph G = (V. E) is a directed graph in which the vertices are
partitioned into k& > 2 disjoint sets V;, 1 <1 < k. In addition, if (u,v) is an
edge in E, then u € V; and v € V| for some 1,1 < i < k., The sets V; and
Vi are such that |V|| = |Vi| = 1. Let s and ¢, respectively, be the vertices in
Vi and V. The vertex s is the source, and ¢t the sink. Let ¢(i. j) be the cost
of edge (i, 7). The cost of a path from s to ¢ is the sum of the costs of the
edges on the path. The multistage graph problem is to find a minimum-cost

CSE, SVIT 3

ADA BCS401

path from s to t. Each set V; defines a stage in the graph. Because of the
constraints on E. every path from s to ¢ starts in stage 1, goes to stage 2,
then to stage 3, then to stage 4. and so on, and eventually terminates in
stage k. Figure 5.2 shows a five-stage graph. A minimum-cost s to ¢t path is
indicated by the broken edges.

v, v, Vs v, Vs

Figure: Five stage graph

A dynamic programming formulation for a k-stage graph problem is ob-
tained by first noticing that every s to ¢ path is the result of a sequence
of k — 2 decisions. The ith decision involves determining which vertex in
Vigr, 1 <3 < k—2,1s to be on the path. It is easy to see that the principle
of optimality holds. Let p(i, 7) be a minimum-cost path from vertex j in V;
to vertex f. Let cost(i.j) be the cost of this path. Then, using the forward
approach, we obtain

cost(i,j) = lll‘l'in {e(g.) +cost(i + 1,1)} (5.5)
ey,
(J.l)e'lli'

Since, cost(k — 1,7) = (g, t) if (j,t) € E and cost(k — 1.7) = oo if
(7,t)ZE. (5.5) may be solved for cost(1,s) by first computing cost(k — 2, 3)
for all 5 € Vi_s, then cost(k— 3.7) for all 7 € Vi 3, and so on, and finally
cost(1, s). Trying this out on the graph of Figure 5.2, we obtain

cost(3,6) = min {6+ cost(4,9).5 + cost(4,10)}
= T

cost(3,7) = min {4 + cost(4.9).3 + cost(4,10)}
=

CSE, SVIT 4

ADA BCS401

cost(3,8) = 7
cost(2,2) = win {4+ cost(3,6),2 + cost(3.7),1 + cost(3,8)}
=7
cost(2.3) = 9
(2.4) = 18
cost(2.5) = 15
(1.1) = min {9+ cost(2,2),7 + cost(2.3),3 + cost(2,4),
2 + cost(2,5)}

cost
cost

= 16

Note that in the calculation of cost(2,2). we have reused the values of
cost(3,6), cost(3.7). and cost(3.8) and so avoided their recomputation, A
minimum cost s to ¢ path has a cost of 16, This path can be determined
easily if we record the decision made at each state (vertex). Let d(:.j) be
the value of | (where [is a node) that minimizes ¢(j.1) + cost(z + 1.1) (see
Equation 5.5). For Figure 5.2 we obtain

d(3,.6) = 10; d(3.7) = 10: d(3,8) = 10;
d(2,2) 7. d(2.3) = 6: d(2.4) 8: d(2,5) = 8;
d(1,1) = 2
Let th(minimum-cost path be s = 1, Uz V3. .., Vp—1.1. It is easy to see

that vo = d(1.1) = 2,v3 = d(2.d(1,1)) = 7, and vy = d(3.d(2, d(l 1))) =
d(3.7) = 10.

Algorithm 5.1 Multistage graph pseudocode corresponding to the forward
approach

Algorithm FGraph(G.k,n,p)

// The input is a k-stage graph G = (V, E) with n vertices
// indexed in order of stages. E is a set of edges and c[t, j]
// is the cost of (¢, 7). p[l : k] is a minimum-cost path.

cost[n] := 0.0;
for j:=n—1to 1 step -1do

{ // Compute cost[j].
Let r be a vertex such that (j,r) is an edge

of G and ¢[j,r] + cost[r] s minimum;
cost(j] == c[j, 7] + cost[r];
dfj] =3

// Find a minimum-cost path.

o] = 1 plk] =
for j:=2 to k —1 do ply] := d[p[5 — 1][;

CSE, SVIT 5

ADA BCS401

The complexity analysis of the function FGraph is fairly straightforward.
If G 18 represented by its adjacency lists. then r in line 9 of Algorithm 5.1
can be found in time proportional to the degree of vertex j. Hence, if G’ has
|E| edges, then the time for the for loop of line 7 is O(|V| + |E|). The time
for the for loop of line 16 is ©(k). Hence, the total time is O(|V| + |E|). In
additio]n to the space needed for the mput. space is needed for cost| |. df |,
and p| |.

Backward Approach

The multistage graph problem can also be solved using the backward
approach. Let bp(i, 7) be a minimum-cost path from vertex s to a vertex j
in V;. Let beost(i, j) be the cost of bp(i,j). From the backward approach we
obtain

beost(z,7) = in_&fin {bcost(i — 1,1) + ¢(l,5)} (5.6)
ev,_
{J,j)e%ﬂ
Since beost(2,7) = ¢(l1,7) if {1,7) € E and beost(2,7) = > if (1,5)¢E,

beost(i, 7) can be computed using (5.6) by first computing beost for 1 = 3,
then for 7 = 4, and so on. For the graph of Figure 5.2, we obtain

beost(3,6) = min {beost(2,2) + ¢(2,6),bcost(2.3) + ¢(3,6)}
= min {9+4,7+ 2}

~= 9

beost(3,7) = 11 bcost(4.10) = 14
beost(3,8) = 10 bcost(4,11) = 16
beost(4.9) = 15 bcost(b,12) = 16

Algorithm 5.2 Multistage graph pseudocode corresponding to backward
approach

Algorithm BGraph(G. k. n.p)
// Same function as FGraph
! beost[1] := 0.0;
for j :=2to ndo
{ // Compute beost[j].
Let » be such that (r, j) is an edge of
G and beost[r] + ¢[r, j] is minimum;
beost[j] := beost[r] + c[r. j];

d[j] i= 73
/ { Find a minimum-cost path.
pll]

1= 15 pik] s=n3
for j:=Fk —1 to 2 do plj] := dlp[j + 1]|;

CSE, SVIT 6

ADA BCS401

2. Transitive Closure using Warshall’s Algorithm,

Definition: The transitive closure of a directed graph with n vertices can be defined as the n
x n boolean matrix T = {t;j}, in which the element in the i row and the j™ column is 1 if there
exists a nontrivial path (i.e., directed path of a positive length) from the i vertex to the j™"
vertex; otherwise, t is 0.

Example: An example of a digraph, its adjacency matrix, and its transitive closure is given
below.

b d

i)
o
L

. alo 1 o o alr 1 1 1

Y l blo o o 1 b1 o111
. A = ¢lo 0 0 0 "= ¢lo 0o 0 o
c—9) dl1 0 1 o0 dl1 1 1 1

(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

We can generate the transitive closure of a digraph with the help of depth first search or
breadth-first search. Performing either traversal starting at the i vertex gives the information
about the vertices reachable from it and hence the columns that contain 1°s in the i" row of
the transitive closure. Thus, doing such a traversal for every vertex as a starting point yields
the transitive closure in its entirety.

Since this method traverses the same digraph several times, we can use a better algorithm
called Warshall’s algorithm. Warshall’s algorithm constructs the transitive closure through
a series of n x n boolean matrices:

RO ..., RV _R® __R™.
Each of these matrices provides certain information about directed paths in the digraph.
Specifically, the elementr,(9) in the i™ row and j™ column of matrix R® (i,j=1,2,...,n k=
0,1,...,n)isequal to 1 if and only if there exists a directed path of a positive length from
the i vertex to the j™ vertex with each intermediate vertex, if any, numbered not higher than
k.

Thus, the series starts with R, which does not allow any intermediate vertices in its paths;
hence, R is nothing other than the adjacency matrix of the digraph. R® contains the
information about paths that can use the first vertex as intermediate. The last matrix in the
series, R™ reflects paths that can use all n vertices of the digraph as intermediate and hence is
nothing other than the digraph’s transitive closure.

This means that there exists a path from the ith vertex vi to the jth vertex vj with each
intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, v;. --- (*)

Two situations regarding this path are possible.

CSE, SVIT

ADA

BCS401

1. In the first, the list of its intermediate vertices does not contain the k™ vertex. Then this

path from vi to vj has intermediate vertices numbered not higher than k—1. i.e. gfk-D =1

2. The second possibility is that path (*) does contain the k™ vertex vk among the
intermediate vertices. Then path (*) can be rewritten as;

vi, vertices numbered <k — 1, vk, vertices numbered <k — 1, vj .

lerk-D =1and rk-D =1

ik

kj

Thus, we have the following formula for generating the elements of matrix R® from the

elements of matrix R* ™V

The Warshall’s algorithm works based on the above formula.

As an example, the application of Warshall’s algorithm to the digraph is shown below. New
1’s are in bold.

@)
(s

CSE, SVIT

R0 =

AN =

H':3,' =

R4 =

a b ¢ d
(0] 1 0 0]
ol o 0 1
0|0 0 O
110 1 0
a b ¢ d_
o [1] o o
0 |0] 0 1]
0o (0] 0 O
1|11 0
a b c¢c d
o 1[o] 1
0 0|0 1
0 0 |o] o
I 5 R
a b c¢c d
0 1 01
0O 0 0|1
0 0 0|0
11 1]
a b c¢c d
S (. A |
13 9 1
0 0 0 O
T 4 % 9

|

|

!

1's reflect the existence of paths

with no intermediate vertices

(R19) js just the adjacency matrix),

boxed row and column are used for getting A/,

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex a

(note a new path from d to b)),

boxed row and column are used for getting R2,

1's reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e., aand b

(note two new paths);

boxed row and column are used for getting R

1's refiect the existence of paths

with intermediate vertices numbered

not higher than 3, i.e,, a, b, and ¢

(no new paths);

boxed row and column are used for getting R4

1's reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e., a, b, ¢, and d
{note five new paths).

ADA BCS401

ALGORITHM WarshalliA|1l..n. 1.n])
/[Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
/[Output: The transitive closure of the digraph
RY) « A
for k — 1 ton do
for/ « 1 ton do
for j <« 1tondo
R®i, j] < R*=D[i, jlor (R*=V|i, k] and R*V[k, j])
return R'"

Analysis

Its time efficiency is @(n°). We can make the algorithm to run faster by treating matrix rows
as bit strings and employ the bitwise or operation available in most modern computer
languages.

Space efficiency: Although separate matrices for recording intermediate results of the
algorithm are used, that can be avoided.

3. All Pairs Shortest Paths using Floyd's Algorithm,

Problem definition: Given a weighted connected graph (undirected or directed), the all-pairs
shortest paths problem asks to find the distances—i.e., the lengths of the shortest paths - from
each vertex to all other vertices.

Applications: Solution to this problem finds applications in communications, transportation
networks, and operations research. Among recent applications of the all-pairs shortest-path
problem is pre-computing distances for motion planning in computer games.

We store the lengths of shortest paths in an n x n matrix D called the distance matrix: the
element djj in the i™ row and the j™ column of this matrix indicates the length of the shortest
path from the i" vertex to the j" vertex.

a 2 ;fg ‘ a b ¢ d a b ¢ d

W > alo 3 al|l0 10 3 4
o /

31 6:><\7 W = 2 0 - bl2 0 5 6

X N\ cle= 7 0 1 - i A (O

(¢ }V—{d)

Le = MY d|6 « = 0 d|6 16 9 0

(a) Digraph. (b) Its weight matrix. (c) Its distance matrix

We can generate the distance matrix with an algorithm that is very similar to Warshall’s
algorithm. It is called Floyd’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices through a
series of n x n matrices:

CSE, SVIT 9

ADA BCS401

The element (), jn the i*" row and the j" column of matrix DY (i,j=1,2,...,n,k=0,1,.
.., n) is equal to the length of the shortest path among all paths from the i vertex to the j"
vertex with each intermediate vertex, if any, numbered not higher than k.

As in Warshall’s algorithm, we can compute all the elements of each matrix D® from its
immediate predecessor D* "

If (9, = 1, then it means that there is a path;

vi, a list of intermediate vertices each numbered not higher than k, vj .

We can partition all such paths into two disjoint subsets: those that do not use thek™ vertex vi
as intermediate and those that do.

I. Since the paths of the first subset have their intermediate vertices numbered not higher
than k — 1, the shortest of them is, by definition of our matrices, of length dl.(]’.f—l)

ii. In the second subset the paths are of the form
Vi, vertices numbered <k — 1, vk, vertices numbered <k — 1, v; .

The situation is depicted symbolically in Figure, which shows (R TR W)
the underlying idea of Floyd’s algorithm. 2§]

o= i
T Vi |

Taking into account the lengths of the shortest paths in both subsets leads to the following
recurrence:
1k

) . (k—1) (k—1) (k—1) . (0)
— - > J— ¥iod
Gii = mm{dij ' t/,.A + ‘[kj | tork 15 ‘/i_j = Wjj.

ALGORITHM Floyd(W|l..n. 1.n])
/lfmplements Floyd’s algorithm for the all-pairs shortest-paths problem
/[MInput: The weight matrix W of a graph with no negative-length cycle
/Output: The distance matrix of the shortest paths” lengths
D < W /fis not necessary if W can be overwritten
for k «— 1 ton do
for; < 1 tondo
for j « ltondo
Dli, j| < min{D|i. j|. D|i, k]| + D]k, j}
return 1)

Analysis: Its time efficiency is ©(n®), similar to the warshall’s algorithm.

CSE, SVIT 10

ADA BCS401

Application of Floyd’s algorithm to the digraph is shown below. Updated elements are shown
in bold.

a b ¢ d
al |0 3 = Lengths of the shortest paths
Do) = b1[2] 0 o= e with no intermediate vertices
clf=| 7 0 1 (D' is simply the weight matrix),
d| |6 w 0
a b ¢ d
al 0 [=] 2 | Lengths of the shortest paths
b|[Z [0] 5 =] with intermediate vertices numbered
DM = W B £ i not higher than 1, i.e, just a
' (note two new shortest paths from
d_s bl O_ btocandfromdtoc).
a b ¢ d_
al 0 = [3] = Lengths of the shortest paths
D) bl 2 0 |5| = with intermediate vertices numbered
T e [7 [o] 1] not higher than 2, i.e., aand b
dl 8 = 19l o (note a new shortest path from cto a).
a b c¢ d
sl o 10 3 [4]] Lengths of the shortest paths
bl 2 o0 5 ls with intermediate vertices numbered
DB = not higher than 3, i.e., a, b, and ¢
cl 9 7 0 |1 .
d |6 6 9 10 (note four new shortest paths from a to b,
| | fromato d, from b to d, and from d to b).
a b ¢ d
al o 10 3 a | Lengthsofthe shortest paths
, bl 2 0 5 6 with intermediate vertices numbered
D@ = el 7 7 o0 1 not higher than 4, i.e., a, b, ¢, and d
d & 16 9 o (note a new shortest path from ¢ to a).
4. Knapsack problem

We start this section with designing a dynamic programming algorithm for the knapsack
problem: given n items of known weights wy, . . . ,wnand valuesvy, . . ., vnand a knapsack of
capacity W, find the most valuable subset of the items that fit into the knapsack. To design a
dynamic programming algorithm, we need to derive a recurrence relation that expresses a
solution to an instance of the knapsack problem in terms of solutions to its smaller sub
instances. Let us consider an instance defined by the first i items, 1<i < n, with weights wy, . .
.,Wi, values v, . . ., Vi, and knapsack capacity j, | <j < W. Let F(i, j) be the value of an
optimal solution to this instance. We can divide all the subsets of the first i items that fit the
knapsack of capacity j into two categories: those that do not include the i item and those that
do. Note the following:

CSE, SVIT 11

ADA BCS401

i. Among the subsets that do not include the i item, the value of an optimal subset is,
by definition, i.e F(i, j) = F(i—1, j).

ii. Among the subsets that do include the i"" item (hence, j — wi> 0), an optimal subset is
made up of this item and an optimal subset of the first i—1 items that fits into the
knapsack of capacity j — wi. The value of such an optimal subset is vi+ F(i — 1, j — wi).

Thus, the value of an optimal solution among all feasible subsets of the first | items is the
maximum of these two values.
- max{F(@—1, j),v;,+ F(i—1, j—w;)} ifj—w;>0,

| FG—1,)) if j —w; <0.

It is convenient to define the initial conditions as follows:

FG.g

F(0,) =0 forj>0and F(i, 0) =0 fori> 0.

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into
the knapsack of capacity W, and an optimal subset itself.

(A W
() !..I
1 (~ w,) F 1.7}
vy V, (FU,)
I (aoa
Table for solving the knapsack problem by dynamic programming

The algorithm for the knapsack problem can be stated as follows

Input: n - total items, W — capacity of the knapsack
wi— weight of the i™item, vi— value of the i" item,

Output: F(i, J) be the value of an optimal solution to this instance considering first i items
with capacity j. F(n,W) is the optimal solution

Method:
forow=0to W
Flo.w]=0
fori=1ton
F[1.0]=0
fori=1ton
forw=0to W
if w, <=w // 1tem 1 can be part of the solution
if v, + F[1-1.w-w;] = F[1-1.w]
Fliw] = Vi + F[1-1.w- w;]
else
Fliw]=F[1-1.w]
else F[Lw]=F[1-l.w] //w,>w

CSE, SVIT 12

ADA BCS401

Example-1:Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W =5.
3 3 $20
4 2 $15

The dynamic programming table, filled by applying formulas is given below

capacity ;
I () | 2 3 - D

) ()) ())] 0 ()
wy=2, =12 | 0 (12 12 12 12

wy =1, va=10 2 0 10 12 22 22 22

wy=23 vi=20 3 () 10 12 22 3() 32

wy=2, vy=15 4 () 10 15 25 30 37

Thus, the maximal value is F(4, 5) = $37.

We can find the composition of an optimal subset by back tracing the computations of this
entry in the table. Since F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution
along with an optimal subset for filling 5 — 2 = 3 remaining units of the knapsack capacity.
The value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an optimal
subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection, which leaves element
F(1, 3 — 1) to specify its remaining composition. Similarly, since F(1, 2) > F(0, 2), item 1 is
the final part of the optimal solution {item 1, item 2, item 4}.

Analysis
The time efficiency and space efficiency of this algorithm are both in ®(nW). The time
needed to find the composition of an optimal solution is in O(n).

Memory Functions

The direct top-down approach to finding a solution to such a recurrence leads to an algorithm
that solves common subproblems more than once and hence is very inefficient.

The classic dynamic programming approach, on the other hand, works bottom up: it fills a
table with solutions to all smaller subproblems, but each of them is solved only once. An
unsatisfying aspect of this approach is that solutions to some of these smaller subproblems
are often not necessary for getting a solution to the problem given. Since this drawback is not
present in the top-down approach, it is natural to try to combine the strengths of the top-down
and bottom-up approaches. The goal is to get a method that solves only subproblems that are
necessary and does so only once. Such a method exists; it is based on using memory
functions.

This method solves a given problem in the top-down manner but, in addition, maintains a
table of the kind that would have been used by a bottom-up dynamic programming algorithm.

CSE, SVIT

13

ADA BCS401

Initially, all the table’s entries are initialized with a special “null” symbol to indicate that they
have not yet been calculated. Thereafter, whenever a new value needs to be calculated, the
method checks the corresponding entry in the table first: if this entry is not “null,” it is simply
retrieved from the table; otherwise, it is computed by the recursive call whose result is then
recorded in the table.

The following algorithm implements this idea for the knapsack problem. After initializing the
table, the recursive function needs to be called with i = n (the number of items) and] = W
(the knapsack capacity).

AlgorithmMFKnapsack(i, j)

/Nmplements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first items being
considered and a nonnegative integer j indicating the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
/INote: Uses as global variables input arrays Weights[1..n], Values[1..n],and
table F[0..n, 0..W] whose entries are initialized with —1’s except for
row 0 and column 0O initialized with 0’s

if Fli, j]<0
if j < Weighs|i]
value <~ MFKnapsack(i — 1, j)
else
value <= maxi(MFKnapsack(i — 1, j),
Values|i |+ MFKnapsack(i — 1. j — Weighis|i]))
Fli, j| < value
return F|i. /|

Example-2 Let us apply the memory function method to the instance considered in Example
1. The table in Figure given below gives the results. Only 11 out of 20nontrivial values (i.e.,
not those in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is
retrieved rather than being recomputed. For larger instances, the proportion of such entries
can be significantly larger.

capacity j

i L | 2 3 4 5
0 0 () 0 0 0 0
0 0 12 12 12 12

!
2 0 2 2 2
5

wy=2, 1y =12

wry=1vy=10

Wy =3, 1y=20 3 () — — 22 — 32

wy=2,v5=1>5 4 0 = == —— — 37
Figure: Example of solving an instance of the knapsack problem by the memory function algorithm

In general, we cannot expect more than a constant-factor gain in using the memory function
method for the knapsack problem, because its time efficiency class is the same as that of the
bottom-up algorithm

CSE, SVIT

14

ADA BCS401

5. Bellman-Ford Algorithm (Single source shortest path with -ve weights)

Problem definition: Given a graph and a source vertex s in graph, find shortest paths
from s to all vertices in the given graph. The graph may contain negative weight edges.

Note that we have discussed Dijkstra’s algorithm for single source shortest path problem.
Dijksra’s algorithm is a Greedy algorithm and time complexity is O(VlogV). But Dijkstra
doesn’t work for graphs with negative weight edges.

Bellman-Ford works for such graphs. Bellman-Ford is also simpler than Dijkstra and suites
well for distributed systems. But time complexity of Bellman-Ford is O(VE), which is more
than Dijkstra.

How it works? - Like other Dynamic Programming Problems, the algorithm calculates
shortest paths in bottom-up manner. It first calculates the shortest distances for the shortest
paths which have at-most one edge in the path. Then, it calculates shortest paths with at-most
2 edges, and so on.

Iteration i finds all shortest paths that use i edges. There can be maximum |V| — 1 edges in
any simple path, that is why the outer loop runs |v| — 1 times. The idea is, assuming that there
is no negative weight cycle, if we have calculated shortest paths with at most i edges, then an
iteration over all edges guarantees to give shortest path with at-most (i+1) edges

Let dist’{u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most /¢
edges. Then, dist![u] = cost{v,u], 1 < u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence. dist"'[u] is the length of an
unrestricted shortest path from v to w.

Our goal then is to compute dist” '[u] for all u. This can be done us-
ing the dynamic programming methodology. First, we make the following
observations:

1. If the shortest path from v to » with at most k. £ > 1, edges has no
more than k — 1 edges, then dist®[u] = disth—1[u].

2. If the shortest path from v to u with at most &, & > 1, edges has
exactly &k edges, then it is made up of a shortest path from v to some
vertex j followed by the edge {j,u). The path from v to j has £ — 1
edges, and its length is dist*~1[j]. All vertices i such that the edge
(z.u) is in the graph are candidates for j. Since we are interested in a
shortest path, the ¢ that minimizes dist® '[i] + cost[i. u] is the correct
value for j.

These observations result in the following recurrence for dist:

dist*[u] = min {dist* '[u]. min {dist*"'[i] + cost[i,u]}}
il

This recurrence can be used to compute dist® from dist* ' for k = 2.3....,
n— 1.
CSE, SVIT 15

http://www.geeksforgeeks.org/archives/27697

ADA BCS401

Bellman-Ford algorithm to compute shortest path

Algorithm BellmanFord(v. cost, dist, n)
// Single-source/all-destinations shortest
// paths with negative edge costs

for i := 1 to n do // Initialize dist.
dist[i] := cost[v, 1];
for k:=2ton—1do
for each u such that u # v and u has
at least one incoming edge do
for each {i.u) in the graph do
if dist[u] > dist[i] + cost[i,u] then
di.st{u] = dust[i] + cost[t, ul;

Example 5.16 Figure 5.10 gives a seven-vertex graph, together with the
arrays dist®, k = 1,....6. These arrays were computed using the equation
just given. For instance, dist*[1] = 0 for all k since 1 is the source node.
Also, dist'[2] = 6,dist'[3] = 5, and dist*[4] = 5, since there are edges from
1 to these nodes. The distance dist'[] is oo for the nodes 5.6, and 7 since
there are no edges to these from 1.
dist?(2] = min {dist'[2], min; dist'[i] + cost[i, 2]}

= min {6.0+6,5— 2,5+ 00,00 + 00,00 + 00,0 + 00} =3

Here the terms 0 + 6,5 — 2,5 + o0, 00 + 00, 00 + o0, and 0o + oo correspond
to a choice of i = 1.3,4.5,6, and 7, respectively. The rest of the entries are

computed in an analogous manner. O
| dist*[1..7]
' kil 2 3 4 5 6 7
/_}(2)—7«;;(3)\ 106 55 = = =
/9/1\ e \3\ 200 3 3 55 4 o
P ~~ 3]0 135247
1 (3 \7\’
% 2 A lalo1 3504 5
! P
5\\Yt_2 3 50135043
W———(6) 6/0 1 35043
(a) A directed graph (b) dist*

Figure 5.10 Shortest paths with negative edge lengths

CSE, SVIT

16

ADA BCS401

Another example

path lengths < 3 path lengths < 4

Figure: Steps of the Bellman Ford algorithm. The numbers with red squares indicate what changed on
each step.

6. Travelling Sales Person problem (T2:5.9),

We have seen how to apply dynamic programming to a subset selection prob-
lem (0/1 knapsack). Now we turn our attention to a permutation problem.
Note that permutation problems usually are much harder to solve than sub-
set problems as there are n! different permutations of n objects whereas
there are only 2" different subsets of n objects (n! > 2"). Let G = (V, E)
be a directed graph with edge costs ¢;;. The variable ¢;; is defined such that
ci; > 0 for all 7 and j and ¢;; = oc if (i,j) € E. Let |V| = n and assume
n > 1. A tour of G is a directed simple cycle that includes every vertex in
V. The cost of a tour is the sum of the cost of the edges on the tour. The
traveling salesperson problem is to find a tour of minimum cost.

The traveling salesperson problem finds application in a variety of situ-
ations. Suppose we have to route a postal van to pick up mail from mail

boxes located at n different sites. An n + 1 vertex graph can be used to
represent the situation. One vertex represents the post office from which the
postal van starts and to which it must return. Edge (i, j) is assigned a cost
equal to the distance from site i to site 7. The route taken by the postal van
is a tour, and we are interested in finding a tour of minimum length.

CSE, SVIT 17

ADA BCS401

As a second examnple, suppose we wish to use a robot arm to tighten
the nuts on some piece of machinery on an assembly line. The arm will
start from its initial position (which is over the first nut to be tightened),
successively move to each of the remaining nuts, and return to the initial
position. The path of the arm is clearly a tour on a graph in which vertices
represent the nuts. A minimum-cost tour will minimize the time needed for
the arm to complete its task (note that only the total arm movement time
is variable; the nut tightening time is independent of the tour).

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k € V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V —{1,k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k to 1 path going through all vertices
in V — {1,.k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex i. going through all vertices in
S. and terminating at vertex 1. The function g(1.V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

9(1,V —{1}) = min {cix +g(k,V —{1,k})} (5.20)
Generalizing (5.20), we obtain (for i € 5)
g9(i.8) = r]rgg{cu +9(7.8 — {i}h} (5.21)

Equation 5.20 can be solved for g(1,V — {1}) if we know g(k,V —{1,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

g(i,¢) = ¢i1, 1 <i < n. Hence, we can use (5.21) to obtain g(i, S) for all S
of size 1. Then we can obtain g(i, S) for § with |S| = 2, and so on. When
|S| < n— 1, the values of i and S for which g(i, S) is needed are such that
i#1,1¢S,andi g8,

Example 5.26 Consider the directed graph of Figure 5.21(a). The edge
lengths are given by matrix ¢ of Figure 5.21(b).

(Dye—=(2) ,

T"--.\ //'"T]0 10 15 20
.

| /\(. 5 0 9 10

V. Ny 6 13 0 1

5 =3

()= ={3) '8 8 9 0
(a) a (b)

Figure 5.21 Directed graph and edge length matrix ¢

CSE, SVIT 18

ADA BCS401

Thus ¢(2,¢) = 21 = 5,9(3,¢) = ¢31 = 6, and g(4,¢) = ¢4 = 8. Using
(5.21), we obtain

9(2,{3}) = eca+g3,¢) = 15 g(2,{4}) = 18
sis.i2h) = 18 o3, 14 = 2
ga{2)) = 13 oA {3)) = 15
Next, we compute g(i,S) with |S|=2,i# 1,1 ¢S andi ¢ S.
(2,{3,4} = min {cog + g(3.{4}),c2a +9(4.{3})} = 25
9(3,{2,4}) = min {e32 +9(2,{4}).c31 + 9(4. {2}); = 25
(4, {2,3}) = min {cs2 +9(2,{3}),ca3 +9(3,{2})} = 23
Finally, from (5.20) we obtain
g(l'{2~3'4}) = min{612+g(2? {334})":13 I 9(35{2$4})~CM +g(4a {2*3})}
= min {35,40,43}
= 35

An optimal tour of the graph of Figure 5.21(a) has length 35. A tour
of this length can be constructed if we retain with each g(i. S) the value of
4 that minimizes the right-hand side of (5.21). Let J(i,S) be this value.
Then, J(1,{2,3,4}) = 2. Thus the tour starts from 1 and goes to 2. The
remaining tour can be obtained from ¢(2, {3, 4}). So J(2, {3, 4}) = 4. Thus
the next edge is (2,4). The remaining tour is for g(4, {3}). So J(4, {3}) =
3. The optimal tour is 1, 2, 4, 3, 1. O

Let N be the number of g(i, §)'s that have to be computed before (5.20)
can be used to compute g(1,V — {1}). For each value of | S| there are n — 1
choices for i. The number of distinct sets S of size k not including 1 and ¢

. -2
18 (k) Hence

n—2 .
N = Z(n - 1) ("122) = (n—1)2"2
k=0

An algorithm that proceeds to find an optimal tour by using (5.20) and (5.21)
will require ©(n*2") time as the computation of g(i. S) with |S| = k requires
k — 1 comparisons when solving (5.21). This is better than enumerating all
n! different tours to find the best one. The most serious drawback of this
dynamic programming solution is the space needed, O(n2"). This is too
large even for modest values of n.

CSE, SVIT 19

ADA BCS401

7. Space-Time Tradeoffs

Introduction

The main idea is to preprocess the problem’s input, in whole or in part, and store the additional
information obtained to accelerate solving the problem afterward. We call this approach as input
enhancement. The algorithms based on this approach are:

e Counting methods for sorting
e Boyer-Moore algorithm for string matching and its simplified version suggested by
Horspool

Sorting by Counting

The main idea here is to use the count variable. This variable shall give us the position of
the elements in its sorted order. Keeping the count variable as reference we can copy the elements
to a new list, so that we have a sorted list with us. The algorithm to do his is called the comparison

counting sort.

CSE, SVIT 20

Array Al0..5] [62]31 8496] 19] 47 |

Initially Countl[OJOJTOJOJOJ]O
After pass i =0 Count[] | 3 1 1 010
After pass i =1 Count () T+21210¢t1
Afterpassi =2 Count|) 4| 3 1B} 1
Afterpass i =3 Count|] 5101
Afterpass i =4 Count|) 0|2
Final state Countl) | 3 | 1 4 | 5 0| 2
Array S[0..5] (19314762 84] 96 |

FIGURE 7.1 Example of sorting by comparison counﬁng

-

ALGORITHM ComparisonCountingSort(A[0..n — 1))

//Sorts an array by comparison counting
/Input: An array A[0..n — 1] of orderable elements
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
fori < Oton —1do Countl[i] « 0
fori —« Oton—2do
forj —i+1ton—-1do
if A[i] < A[j]
Count[j] < Count[j]1+1

else Count[i] <« Count[i] + 1
fori <« 0ton —1do S[Count[i}]] < Ali]
return S

What is the time efficiency of this algorithm? It should be quadratic because
the algorithm considers all the different pairs of an n-element array. More for-
mally, the number of times its basic operation, the comparison A[i] < A[j], is
executed is equal to the sum we have encountered several times already:

n-2 n-1 n—2 ' n—2 . nn—1)
cm=Y Y 1=YIn-D-G+D+1=) (r-1-H=———.
i=0 j=i+1 i=0 i=0

Since the algorithm makes the same number of key comparisons as selection sort
and in addition uses a linear amount of extra space, it can hardly be recommended
for practical use.

But the counting idea does work productively in a situation in which elements
to be sorted belong to a known small set of values. Assume, for example, that we
have to sort a list whose values can be either 1 or 2. Rather than applying a
general sorting algorithm, we should be able to take advantage of this additional
information about values to be sorted. Indeed, we can scan the list to compute
the number of 1’s and the number of 2's in it and then, on the second pass, simply
make the appropriate number of the first elements equal to 1 and the remaining
elements equal to 2. More generally, if element values are integers between some

lower bound / and upper bound u, we can compute the frequency of eac, -
values and store them in array F[0..u — []. Then the first F[0] Positiong ;%
sorted list must be filled with J, the next F[1] positions with / +1, and g . 1t
this can be done, of course, only if we can overwrite the given elements, Ay
Let us consider a more realistic situation of sorting a list of items wit, 8
other information associated with their keys so that we cannot overwrite tp, li'h'e
elements. Then we can copy elements into a new array S[0..n—1] tohold the " r:t 3
list as follows. The elements of A whose values are equal to the lowest POssiby
value / are copied into the first F[0] elements of S, i.e., positions 0 through F0]- s
the elements of value [+ 1 are copied to positions from F[0] to (F[0] + F[1 Do
and so on. Since such accumulated sums of frequencies are called a diStributio,;

in statistics, the method itself is known as distribution counting.

EXAMPLE Consider sorting the array

131112131212

whose values are known to come from the set {11, 12, 13} and should not pe
overwritten in the process of sorting. The frequency and distribution arrays are

as follows:

Array values - 1112 13
Frequencies 1.3 2
Distributionvalues 1 4 6

Note that the distribution values indicate the proper positions for the last occur-
rences of their elements in the final sorted array. If we index array positions from0
ton—1, the distribution values must be reduced by 1 to get corresponding element
positions. i

It is more convenient to process the input array right to left. For the exam-
ple, the last element is 12, and, since its distribution value is 4, we place this
12 in position 4 — 1 = 3 of the array S that will hold the sorted list. Then e
decrease the 12’s distribution value by 1 and proceed to the next (from the right)
element in the given array. The entire processing of this example is depicted l:

Figure 7.2.
Here is a pseudocode of this algorithm.

ALGORITHM DistributionCounting(A[0..n — 1],1,u)
//Sorts an array of integers from a limited range by distribution counting
/[Input: An array A[0..n — 1] of integers between / and u (I < u)
//Output: Array S[0..n — 1) of A’s elements sorted in nondecreasing 0
forj « Otou —ldo D[j] «+ 0 //initialize frequencies

rder

D[0..2) 510..5]
12

A (5] =12
Al4] =12
Al3] =13
Al2) =12
Al] =11
A0l =13

12

13

12

11

Olmlalalala
_l—INNu.
;Mojieoie

13

FIGURE 7.2 Example of sorting by distribution counting. The distribution vaiues being
decremented are shown in bold.

fori < 0ton — 1do D[A[i] —] « D[A[i] — [] + 1 //compute frequencies
forj < 1 to u — !l do D[j] « D[j — 1] + DJj] //reuse for distribution
fori < n —1downto O do

j— Alil—-1

S[D[j] — 1] « Ali]

D[j]l « D[j1—-1
return S :

Assuming that the range of array values is fixed, this is obviously a linear algo-
rithm because it makes just two consecutive passes through its input array A. This
is a better time-efficiency class than that of the most efficient sorting algorithms—
mergesort, quicksort, and heapsort—we have encountered. It is important to
remember, however, that this efficiency is obtained by exploiting the specific
nature of input lists on which sorting by distribution counting works, in addition
to trading space for time.

Input Enhancement in String Matching- Harspool’s algorithm.

Horspool’s Algorithm

Consider, as an example, searching for the pattern BARBER in some text:

SO “e c R Sn—1
B AR B E R

Starting with the last R of the pattern and moving right to left, we compare the

corresponding pairs of characters in the pattern and the text. If all the pattern’s

characters match successfully, a matching substring is found. (Then the search

can be either stopped altogether or continued if another occurrence of the same

pattern is desired.) If, however, we encounter a mismatch, we need to shift the
pattern to the right. Clearly, we would like to make as large a shift as possible
without risking the possibility of missing a matching substring in the text. Hor-
spool’s algorithm determines the size of such a shift by looking at the character
c of the text that was aligned against the last character of the pattern. In general,
the following four possibilities can occur.

Case 1 If there are no c’s in the pattern—e.g., c is letter § in our example—we
can safely shift the pattern by its entire length (if we shift less, some character of
the pattern would be aligned against the text’s character ¢ that is known not to be

in the pattern):

Sn—

#99 ois S
#
R

B A RBE
B A R B ER

Case 2 If there are occurrences of character c in the p?nem but it .
the last one there—e.g., ¢ is letter B in our examgle—-the shift should aligy rt\:t
rightmost occurrence of c in the pattern with the ¢ in the text: 6

S0 Sn—|

D V™

B AR BE
B AR
Case 3 If c happens to be the last character in the pattern but there are no ¢

among its other m — 1 characters, the shift should be similar to that of Case 1: tp,
d by the entire pattern’s length m, e.g.,

pattern should be shifte
50 M E R Sn—1
0
L E A D

L EADER

if c happens to be the last character in the pattern and there
the shift should be similar to that
— 1 characters in the

Case 4 Finally,
are other ¢’s among its first m — 1 characters,
of Case 2: the rightmost occurrence of ¢ among the first m

pattern should be aligned with the text’s ¢, e.g.,

Sn-1

o
=

S0

R E O

m O=x
~ =X

D E R

Om

R
R

These examples clearly demonstrate that right-to-left character comparisons
can lead to farther shifts of the pattern than the shifts by only one position alway’
made by the brute-force algorithm. However, if such an algorithm had to check?
the characters of the pattern on every trial, it would lose much of this superiof ity:
Fortunately, the idea of input enhancement makes repetitive comparisons l"}“ec’
essary. We can precompute shift sizes and store them in a table. The table Wil
indexed by all possible characters that can be encountered in a text, including
natural language texts, the space, punctuation symbols, and other specia’ &
ters. (Note that no other information about the text in which eventua

le fe8 Wil feett
by the formula S entries will indicate the shift sizes computed

the pattern’s length m,

if ¢ is not amo
ng the first m — 1 characters of the pattern

the distance from. the rightmost ¢ among the first m
| of the pattern to its Jast character
’

tc) =

— 1 characters

otherwise
(7.1)

For example, for tt.xe pattern BARBER, all the table’s entries will be equal to 6,
except for the entries for E, B, R, and A, which will be 1, 2, 3, and 4, respectively.
Herft 1s a simple algorithm for computing the shift table entries. Initialize all
the entries to the pattern’s length m and scan the pattern left to right repeating
the following step m — 1 times: for the jth character of the pattern (0 < j <
m = 2), overwnt.e 1ts entry in the table with m — 1 — j, which is the character’s
distance to the right end of the pattern. Note that since the algorithm scans the

pattern from left to right, the last overwrite will happen for a character’s rightmost
occurrence—exactly as we would like it to be.

ALGORITHM ShiftTable(P[0..m — 1))

//Fills the shift table used by Horspool’s and Boyer-Moore algorithms
//Input: Pattern P[0..m — 1] and an alphabet of possible characters
//Output: Table[0..size — 1] indexed by the alphabet’s characters and
// filled with shift sizes computed by formula (7.1)

initialize all the elements of Table with m

forj < 0tom — 2 do Table[P[jl] « m—1—j

return Table

Now, we can summarize the algorithm as follows.

Horspool’s algorithm

Step 1 For a given pattern of length m and the alphabet used in both the
pattern and text, construct the shift table as described above.

Step 2 Align the pattern against the beginning of the .text.

Step 3 Repeat the following until either a matching substring is fgund or the
pattern reaches beyond the last character of the text. Starting with ttfe
last character in the pattern, compare the corresponding characters in
the pattern and text until either all m characters are matched (t_hen
stop) or a mismatching pair is encountereq. In the latter case, retrieve
the entry t(c) from the ¢’s column of the shift table where ¢ 1s the text’s
character currently aligned against the last character of the pattern,
and shift the pattern by ¢(c) characters to the right along the text.

Here is a pseudocode of Horspool’s algorithm.

ALGORITHM HorspoolMatching(P[O..m —1], T[0.n = 1])
/[Implements Horspool’s algorithm for string matching

/linput: Pattern P(0..m — 1] and text T[0..n — 1] ‘
//Output: The index of the left end of the first matching substring

I or —1 if there are no matches
ShiftTable(P[0.m — 1]) /lgenerate Table of shifts
[+m-=1 /lposition of the pattern’s right end
whilei <n-1do
k+«0 //number of matched characters
whilek <m—1and P[m —1—k] = T(i — k] do
k<k+1
iftk=m
returni —m +1
else i « i+Table[T[i]]
return —1

EXAMPLE As an example of a complete application of Horspool’s algorithm,
consider searching for the pattern BARBER in a text that comprises English letters
and spaces (denoted by underscores). The shift table, as we mentioned, is filled as
follows:

characterc | A|B|C|DJ|E|F]| ... |R| ... |2 | —
shift ¢(c) 412(6]6]1]6 6 3 6 6| 6

The actual search in a particular text prdceeds as follows:

3

J I M ARBERSHOFP
BAREB

wmu
@ >0 D>
> =
A ™
o m
m

A, simplg exa'mple can demonstrate that the worst-case efficiency of Hor-
;sppc?l 8 algorithm is in © (nm) (Problem 4 in the exercises). But for random texts,
itis in ®(n), and, though in the same efficiency class, Horspool’s algorithm is obvi-
ously faster on average than the brute-force algorithm, In fact, as mentioned, it

is often at least as efficient as its more sophisticat ; b
R. Boyer and J. Moore. phisticated predecessor discovered by

