

Module-5 : Backtracking

Lecture Notes on

Analysis and Design of Algorithms

BCS401

Contents

1. Backtracking:

1.1. General method

1.2. N-Queens problem

1.3. Sum of subsets problem

1.4. Graph coloring

1.5. Hamiltonian cycles

2. Branch and Bound:

2.1. Assignment Problem,

2.2. Travelling Sales Person problem

3. 0/1Knapsack problem

3.1. LC Branch and Bound solution

3.2. FIFO Branch and Bound solution

4. NP-Complete and NP-Hard problems

4.1. Basic concepts

4.2. Non-deterministic algorithms

4.3. P, NP, NP-Complete, and NP-Hard

classes

ADA BCS401

CSE, SVIT 1

1. Backtracking

Some problems can be solved, by exhaustive search. The exhaustive-search technique

suggests generating all candidate solutions and then identifying the one (or the ones) with a

desired property.

Backtracking is a more intelligent variation of this approach. The principal idea is to

construct solutions one component at a time and evaluate such partially constructed

candidates as follows. If a partially constructed solution can be developed further without

violating the problem’s constraints, it is done by taking the first remaining legitimate option

for the next component. If there is no legitimate option for the next component, no

alternatives for any remaining component need to be considered. In this case, the algorithm

backtracks to replace the last component of the partially constructed solution with its next

option.

It is convenient to implement this kind of processing by constructing a tree of choices being

made, called the state-space tree. Its root represents an initial state before the search for a

solution begins. The nodes of the first level in the tree represent the choices made for the first

component of a solution; the nodes of the second level represent the choices for the second

component, and soon. A node in a state-space tree is said to be promising if it corresponds to

a partially constructed solution that may still lead to a complete solution; otherwise, it is

called non-promising. Leaves represent either non-promising dead ends or complete

solutions found by the algorithm.

In the majority of cases, a statespace tree for a backtracking algorithm is constructed in the

manner of depth-first search. If the current node is promising, its child is generated by adding

the first remaining legitimate option for the next component of a solution, and the processing

moves to this child. If the current node turns out to be non-promising, the algorithm

backtracks to the node’s parent to consider the next possible option for its last component; if

there is no such option, it backtracks one more level up the tree, and so on. Finally, if the

algorithm reaches a complete solution to the problem, it either stops (if just one solution is

required) or continues searching for other possible solutions.

1.1 General method (Textbook T2:7.1)

ADA BCS401

CSE, SVIT 2

General Algorithm (Recursive)

ADA BCS401

CSE, SVIT 3

General Algorithm (Iterative)

General Algorithm for backtracking (From textbook T1)

1.2 N-Queens problem

The problem is to place n queens on an n × n chessboard so that no two queens attack each

other by being in the same row or in the same column or on the same diagonal.

So let us consider the four-queens problem and solve it by the backtracking technique.

Since each of the four queens has to be placed in its own row, all we need to do is to assign a

column for each queen on the board presented in figure.

ADA BCS401

CSE, SVIT 4

We start with the empty board and then place queen 1 in the first possible position of its row,

which is in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1

and 2, in the first acceptable position for it, which is square (2, 3), the square in row 2 and

column 3. This proves to be a dead end because there is no acceptable position for queen 3.

So, the algorithm backtracks and puts queen 2 in the next possible position at (2, 4). Then

queen 3 is placed at (3, 2), which proves to be another dead end. The algorithm then

backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3

to(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-space tree of this

search is shown in figure.

Figure: State-space tree of solving the four-queens problem by backtracking. ×

denotes an unsuccessful attempt to place a queen in the indicated column. The

numbers above the nodes indicate the order in which the nodes are generated.

If other solutions need to be found, the algorithm can simply resume its operations at the leaf

at which it stopped. Alternatively, we can use the board’s symmetry for this purpose.

Finally, it should be pointed out that a single solution to the n-queens problem for any n ≥ 4

can be found in linear time.

Note: The algorithm NQueens() is not in the syllabus. It is given here for interested learners.

The algorithm is referred from textbook T2.

ADA BCS401

CSE, SVIT 5

1.3 Sum of subsets problem

Problem definition: Find a subset of a given set A = {a1, . . . , an} of n positive integers

whose sum is equal to a given positive integer d.

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}.

Of course, some instances of this problem may have no solutions.

It is convenient to sort the set’s elements in increasing order. So, we will assume that

a1< a2< . . . < an.

The state-space tree can be constructed as a binary tree like that in Figure shown below for

the instance A = {3, 5, 6, 7} and d = 15.

The number inside a node is the sum of the elements already included in the subsets

represented by the node. The inequality below a leaf indicates the reason for its termination.

ADA BCS401

CSE, SVIT 6

The root of the tree represents the starting point, with no decisions about the given elements

made as yet. Its left and right children represent, respectively, inclusion and exclusion of a1 in

a set being sought.

Similarly, going to the left from a node of the first level corresponds to inclusion of a2 while

going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node

on the i
th

 level of the tree indicates which of the first in numbers have been included in the

subsets represented by that node.

We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a

solution to the problem. We can either report this result and stop or, if all the solutions need

to be found, continue by backtracking to the node’s parent. If s is not equal to d, we can

terminate the node as non-promising if either of the following two inequalities holds:

Example: Apply backtracking to solve the following instance of the subset sum problem: A

= {1, 3, 4, 5} and d = 11.

1.4 Graph coloring

ADA BCS401

CSE, SVIT 7

ADA BCS401

CSE, SVIT 8

ADA BCS401

CSE, SVIT 9

Analysis

ADA BCS401

CSE, SVIT 10

1.5 Hamiltonian cycles

ADA BCS401

CSE, SVIT 11

ADA BCS401

CSE, SVIT 12

2. Branch and Bound

Recall that the central idea of backtracking, discussed in the previous section, is tocut off a

branch of the problem’s state-space tree as soon as we can deduce that it cannot lead to a

solution. This idea can be strengthened further if we deal with an optimization problem.

An optimization problem seeks to minimize or maximize some objective function (a tour

length, the value of items selected, the cost of an assignment, and the like), usually subject to

some constraints. An optimal solution is a feasible solution with the best value of the

objective function (e.g., the shortest Hamiltonian circuit or the most valuable subset of items

that fit the knapsack).

Compared to backtracking, branch-and-bound requires two additional items:

1. a way to provide, for every node of a state-space tree, a bound on the best value of

the objective function on any solution that can be obtained by adding further

components to the partially constructed solution represented by the node

2. the value of the best solution seen so far

In general, we terminate a search path at the current node in a state-space tree of a branch-

and-bound algorithm for any one of the following three reasons:

1. The value of the node’s bound is not better than the value of the best solution seen so

far.

2. The node represents no feasible solutions because the constraints of the problem are

already violated.

3. The subset of feasible solutions represented by the node consists of a single point (and

hence no further choices can be made)—in this case, we compare the value of the

objective function for this feasible solution with that of the best solution seen so far

and update the latter with the former if the new solution is better.

2.1 Assignment Problem

Let us illustrate the branch-and-bound approach by applying it to the problem of assigning n

people to n jobs so that the total cost of the assignment is as small as possible.

An instance of the assignment problem is specified by an n × n cost matrix C so that we can

state the problem as follows: select one element in each row of the matrix so that no two

selected elements are in the same column and their sum is the smallest possible. We will

demonstrate how this problem can be solved using the branch-and-bound technique by

considering the small instance of the problem. Consider the data given below.

ADA BCS401

CSE, SVIT 13

How can we find a lower bound on the cost of an optimal selection without actually solving

the problem?

We can do this by several methods. For example, it is clear that the cost of any solution,

including an optimal one, cannot be smaller than the sum of the smallest elements in each

of the matrix’s rows. For the instance here, this sum is 2 + 3+ 1+ 4 = 10.We can and will

apply the same thinking to partially constructed solutions. For example, for any legitimate

selection that selects 9 from the first row, the lower bound will be 9 + 3 + 1+ 4 = 17.

Rather than generating a single child of the last promising node as we did in backtracking, we

will generate all the children of the most promising node among non-terminated leaves in the

current tree. (Non terminated, i.e., still promising, leaves are also called live.) How can we

tell which of the nodes is most promising? We can do this by comparing the lower bounds of

the live nodes. It is sensible to consider a node with the best bound as most promising,

although this does not, of course, preclude the possibility that an optimal solution will

ultimately belong to a different branch of the state-space tree. This variation of the strategy is

called the best-first branch-and-bound.

We start with the root that corresponds to no elements selected from the cost matrix. The

lower-bound value for the root, denoted lb, is 10. The nodes on the first level of the tree

correspond to selections of an element in the first row of the matrix, i.e., a job for person a.

See the figure given below.

Figure: Levels 0 and 1 of the state-space tree for the instance of the assignment

problem being solved with the best-first branch-and-bound algorithm. The number

above a node shows the order in which the node was generated. A node’s fields

indicate the job number assigned to person a and the lower bound value, lb, for this

node.

So we have four live leaves—nodes 1 through 4—that may contain an optimal solution. The

most promising of them is node 2 because it has the smallest lower bound value. Following

our best-first search strategy, we branch out from that node first by considering the three

different ways of selecting an element from the second row and not in the second column -

the three different jobs that can be assigned to person b. See the figure given below (Fig

12.7).

ADA BCS401

CSE, SVIT 14

Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal solution, we

again choose the one with the smallest lower bound, node 5. First, we consider selecting the

third column’s element from c’s row (i.e., assigning person c to job 3); this leaves us with no

choice but to select the element from the fourth column of d’s row (assigning person d to job

4). This yields leaf 8 (Figure 12.7), which corresponds to the feasible solution {a→2, b→1,

c→3, d →4} with the total cost of 13. Its sibling, node 9, corresponds to the feasible solution

{a→2,b→1, c→4, d →3} with the total cost of 25. Since its cost is larger than the cost of the

solution represented by leaf 8, node 9 is simply terminated. (Of course, if its cost were

smaller than 13, we would have to replace the information about the best solution seen so far

with the data provided by this node.)

Now, as we inspect each of the live leaves of the last state-space tree—nodes1, 3, 4, 6, and 7

in Figure 12.7—we discover that their lower-bound values are not smaller than 13, the value

of the best selection seen so far (leaf 8). Hence, we terminate all of them and recognize the

solution represented by leaf 8 as the optimal solution to the problem.

2.2 Travelling Sales Person problem

We will be able to apply the branch-and-bound technique to instances of the traveling

salesman problem if we come up with a reasonable lower bound on tour lengths. One very

simple lower bound can be obtained by finding the smallest element in the intercity distance

matrix D and multiplying it by the number of cities n.

ADA BCS401

CSE, SVIT 15

But there is a less obvious and more informative lower bound for instances with symmetric

matrix D, which does not require a lot of work to compute. We can compute a lower bound

on the length l of any tour as follows. For each city i, 1≤ i ≤ n, find the sum si of the distances

from city i to the two nearest cities; compute the sums of these n numbers, divide the result

by 2, and, if all the distances are integers, round up the result to the nearest integer:

lb = ⌈s/2⌉... (1)

For example, for the instance in Figure 2.2a, formula (1) yields

Moreover, for any subset of tours that must include particular edges of a given graph, we can

modify lower bound (formula 1) accordingly. For example, for all the Hamiltonian circuits of

the graph in Figure 2.2a that must include edge (a, d), we get the following lower bound by

summing up the lengths of the two shortest edges incident with each of the vertices, with the

required inclusion of edges (a, d)and (d, a):

We now apply the branch-and-bound algorithm, with the bounding function given by

formula-1, to find the shortest Hamiltonian circuit for the graph in Figure 2.2a.

To reduce the amount of potential work, we take advantage of two observations.

1. First, without loss of generality, we can consider only tours that start at a.

2. Second, because our graph is undirected, we can generate only tours in which b is

visited before c. (Refer Note at the end of section 2.2 for more details)

In addition, after visiting n−1= 4 cities, a tour has no choice but to visit the remaining

unvisited city and return to the starting one. The state-space tree tracing the algorithm’s

application is given in Figure 2.2b.

Note: An inspection of graph with 4 nodes (figure given below) reveals three pairs of tours

that differ only by their direction. Hence, we could cut the number of vertex permutations by

half. We could, for example, choose any two intermediate vertices, say, b and c, and then

consider only permutations in which b precedes c. (This trick implicitly defines a tour’s

direction.)

Figure: Solution to a small instance of the traveling salesman problem by exhaustive search.

ADA BCS401

CSE, SVIT 16

Figure 2.2(a)Weighted graph. (b) State-space tree of the branch-and-bound algorithm to find

a shortest Hamiltonian circuit in this graph. The list of vertices in a node specifies a

beginning part of the Hamiltonian circuits represented by the node.

Discussion

The strengths and weaknesses of backtracking are applicable to branch-and-bound as well.

The state-space tree technique enables us to solve many large instances of difficult

combinatorial problems. As a rule, however, it is virtually impossible to predict which

instances will be solvable in a realistic amount of time and which will not.

In contrast to backtracking, solving a problem by branch-and-bound has both the challenge

and opportunity of choosing the order of node generation and finding a good bounding

function. Though the best-first rule we used above is a sensible approach, it may or may not

lead to a solution faster than other strategies. (Artificial intelligence researchers are

particularly interested in different strategies for developing state-space trees.)

Finding a good bounding function is usually not a simple task. On the one hand, we want this

function to be easy to compute. On the other hand, it cannot be too simplistic - otherwise, it

would fail in its principal task to prune as many branches of a state-space tree as soon as

possible. Striking a proper balance between these two competing requirements may require

intensive experimentation with a wide variety of instances of the problem in question.

ADA BCS401

CSE, SVIT 17

3. 0/1 Knapsack problem

Note: For this topic as per the syllabus both textbooks T1 & T2 are suggested.

Here we discuss the concepts from T1 first and then that of from T2.

Topic form T1 (Levitin)

Let us now discuss how we can apply the branch-and-bound technique to solving the

knapsack problem. Given n items of known weights wi and values vi, i = 1, 2, . . . , n, and a

knapsack of capacity W, find the most valuable subset of the items that fit in the knapsack.

∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊 𝑎𝑛𝑑

1≤𝑖≤𝑛

∑ 𝑖𝑥𝑖 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑, 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 = 0 𝑜𝑟 1

1≤𝑖≤𝑛

It is convenient to order the items of a given instance in descending order by their value-to-

weight ratios.

Each node on the i
th

 level of state space tree, 0 ≤ i ≤ n, represents all the subsets of n items

that include a particular selection made from the first i ordered items. This particular

selection is uniquely determined by the path from the root to the node: a branch going to the

left indicates the inclusion of the next item, and a branch going to the right indicates its

exclusion.

We record the total weight w and the total value v of this selection in the node, along with

some upper bound ub on the value of any subset that can be obtained by adding zero or more

items to this selection. A simple way to compute the upper bound ub is to add to v, the total

value of the items already selected, the product of the remaining capacity of the knapsack W

– w and the best per unit payoff among the remaining items, which is vi+1/wi+1:

ub = v + (W − w)(vi+1/wi+1).

Example: Consider the following problem. The items are already ordered in descending order

of their value-to-weight ratios.

Let us apply the branch-and-bound algorithm. At the root of the state-space tree (see Figure

12.8), no items have been selected as yet. Hence, both the total weight of the items already

selected w and their total value v are equal to 0. The value of the upper bound is 100.

Node 1, the left child of the root, represents the subsets that include item 1. The total weight

and value of the items already included are 4 and 40, respectively; the value of the upper

bound is 40 + (10 − 4) * 6 = 76.

ADA BCS401

CSE, SVIT 18

Node 2 represents the subsets that do not include item 1. Accordingly, w = 0, v = 0, and ub =

0 + (10 − 0) * 6 = 60. Since node 1 has a larger upper bound than the upper bound of node 2,

it is more promising for this maximization problem, and we branch from node 1 first. Its

children—nodes 3 and 4—represent subsets with item 1 and with and without item 2,

respectively. Since the total weight w of every subset represented by node 3 exceeds the

knapsack’s capacity, node 3 can be terminated immediately.

Node 4 has the same values of w and v as its parent; the upper bound ub is equal to 40 + (10

− 4) * 5 = 70. Selecting node 4 over node 2 for the next branching (Due to better ub), we get

nodes 5 and 6 by respectively including and excluding item 3. The total weights and values as

well as the upper bounds for these nodes are computed in the same way as for the preceding

nodes.

Branching from node 5 yields node 7, which represents no feasible solutions, and node 8,

which represents just a single subset {1, 3} of value 65. The remaining live nodes 2 and 6

have smaller upper-bound values than the value of the solution represented by node 8. Hence,

both can be terminated making the subset {1, 3} of node 8 the optimal solution to the

problem.

Solving the knapsack problem by a branch-and-bound algorithm has a rather unusual

characteristic. Typically, internal nodes of a state-space tree do not define a point of the

problem’s search space, because some of the solution’s components remain undefined. (See,

for example, the branch-and-bound tree for the assignment problem discussed in the

ADA BCS401

CSE, SVIT 19

preceding subsection.) For the knapsack problem, however, every node of the tree represents

a subset of the items given. We can use this fact to update the information about the best

subset seen so far after generating each new node in the tree. If we had done this for the

instance investigated above, we could have terminated nodes 2 and 6 before node 8 was

generated because they both are inferior to the subset of value 65 of node 5.

Concepts form textbook T2 (Horowitz)

Let us understand some of the terminologies used in backtracking &branch and bound.

 Live node - a node which has been generated and all of whose children are not yet been

generated.

 E-node - is a live node whose children are currently being explored. In other words, an E-
node is a node currently being expanded.

 Dead node - a node that is either not to be expanded further, or for which all of its

children have been generated

 Bounding Function - will be used to kill live nodes without generating all their children.

 Backtracking - is depth first node generation with bounding functions.

 Branch-And-Bound is a method in which E-node remains E-node until it is dead.

 Breadth-First-Search: Branch-and Bound with each new node placed in a queue. The

front of the queen becomes the new E-node.

 Depth-Search (D-Search): New nodes are placed in to a stack. The last node added is the
first to be explored.

ADA BCS401

CSE, SVIT 20

0/1 Knapsack problem - Branch and Bound based solution

As the technique discussed here is applicable for minimization problems, let us convert the

knapsack problem (maximizing the profit) into minimization problem by negating the

objective function

ADA BCS401

CSE, SVIT 21

3.1 LC (Least Cost) Branch and Bound solution

ADA BCS401

CSE, SVIT 22

ADA BCS401

CSE, SVIT 23

3.2 FIFO Branch and Bound solution

ADA BCS401

CSE, SVIT 24

Conclusion

ADA BCS401

CSE, SVIT 25

4. NP-Complete and NP-Hard problems

4.1 Basic concepts

For many of the problems we know and study, the best algorithms for their solution have

computing times can be clustered into two groups;

1. Solutions are bounded by the polynomial- Examples include Binary search O(log n),

Linear search O(n), sorting algorithms like merge sort O(n log n), Bubble sort O(n
2
)

&matrix multiplication O(n
3
) or in general O(n

k
) where k is a constant.

2. Solutions are bounded by a non-polynomial-Examples include travelling salesman

problem O(n
2
2

n
) & knapsack problem O(2

n/2
). As the time increases exponentially,

even moderate size problems cannot be solved.

So far, no one has been able to device an algorithm which is bounded by the polynomial for

the problems belonging to the non-polynomial. However impossibility of such an algorithm

is not proved.

4.2 Non deterministic algorithms

We also need the idea of two models of computer (Turing machine): deterministic and non-

deterministic. A deterministic computer is the regular computer we always thinking of; a non-

deterministic computer is one that is just like we’re used to except that is has unlimited

parallelism, so that any time you come to a branch, you spawn a new “process” and examine

both sides.

When the result of every operation is uniquely defined then it is called deterministic

algorithm.

When the outcome is not uniquely defined but is limited to a specific set of possibilities, we

call it non deterministic algorithm.

We use new statements to specify such non deterministic algorithms.

 choice(S) - arbitrarily choose one of the elements of set S

 failure - signals an unsuccessful completion

 success - signals a successful completion

The assignment X = choice(1:n) could result in X being assigned any value from the integer

range[1..n]. There is no rule specifying how this value is chosen.

“The nondeterministic algorithms terminates unsuccessfully iff there is no set of choices

which leads to the successful signal”.

Example-1: Searching an element x in a given set of elements A(1:n). We are required to

determine an index j such that A(j) = x or j = 0 if x is not present.

j := choice(1:n)

if A(j) = x then print(j); success endif

ADA BCS401

CSE, SVIT 26

print(‘0’); failure

Example-2: Checking whether n integers are sorted or not

procedure NSORT(A,n);

//sort n positive integers//

var integer A(n), B(n), n, i, j;

begin

B := 0; //B is initialized to zero//

for i := 1 to n do

begin

end;

j := choice(1:n);

if B(j) <> 0 then failure;

B(j) := A(j);

for i := 1 to n-1 do //verify order//

if B(i) > B(i+1) then failure;

print(B);

success;

end.

“A nondeterministic machine does not make any copies of an algorithm every time a choice

is to be made. Instead it has the ability to correctly choose an element from the given set”.

A deterministic interpretation of the nondeterministic algorithm can be done by making

unbounded parallelism in the computation. Each time a choice is to be made, the algorithm

makes several copies of itself, one copy is made for each of the possible choices.

Decision vs Optimization algorithms

An optimization problem tries to find an optimal solution.

A decision problem tries to answer a yes/no question. Most of the problems can be specified

in decision and optimization versions.

For example, Traveling salesman problem can be stated as two ways

 Optimization - find hamiltonian cycle of minimum weight,

 Decision - is there a hamiltonian cycle of weight  k?

For graph coloring problem,

 Optimization – find the minimum number of colors needed to color the vertices of a

graph so that no two adjacent vertices are colored the same color

 Decision - whether there exists such a coloring of the graph’s vertices with no more

than m colors?

Many optimization problems can be recast in to decision problems with the property that the

decision algorithm can be solved in polynomial time if and only if the corresponding

optimization problem.

ADA BCS401

CSE, SVIT 27

4.3 P, NP, NP-Complete and NP-Hard classes

NP stands for Non-deterministic Polynomial time.

Definition: P is a set of all decision problems solvable by a deterministic algorithm in

polynomial time.

Definition: NP is the set of all decision problems solvable by a nondeterministic algorithm in

polynomial time. This also implies P ⊆ NP

Problems known to be in P are trivially in NP — the nondeterministic machine just never

troubles itself to fork another process, and acts just like a deterministic one. One example of a

problem not in P but in NP is Integer Factorization.

But there are some problems which are known to be in NP but don’t know if they’re in P. The

traditional example is the decision-problem version of the Travelling Salesman Problem

(decision-TSP). It’s not known whether decision-TSP is in P: there’s no known poly-time

solution, but there’s no proof such a solution doesn’t exist.

There are problems that are known to be neither in P nor NP; a simple example is to

enumerate all the bit vectors of length n. No matter what, that takes 2
n
 steps.

Now, one more concept: given decision problems P and Q, if an algorithm can transform a

solution for P into a solution for Q in polynomial time, it’s said that Q is poly-time

reducible (or just reducible) to P.

The most famous unsolved problem in computer science is “whether P=NP or P≠NP? ”

Figure: Commonly believed

relationship between P and NP

Figure: Commonly believed relationship between P, NP, NP-

Complete and NP-hard problems

Definition: A decision problem D is said to be NP-complete if:

1. it belongs to class NP

2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to each other is not

very surprising. For example, Hamiltonian circuit problem is polynomially reducible to the

decision version of the traveling salesman problem.

https://en.wikipedia.org/wiki/Integer_factorization_problem

ADA BCS401

CSE, SVIT 28

NP-Complete problems have the property that it can be solved in polynomial time if all other

NP-Complete problems can be solved in polynomial time. i.e if anyone ever finds a poly-time

solution to one NP-complete problem, they’ve automatically got one for all the NP-complete

problems; that will also mean that P=NP.

Example for NP-complete is CNF-satisfiability problem. The CNF-satisfiability problem

deals with boolean expressions. This is given by Cook in 1971. The CNF-satisfiability

problem asks whether or not one can assign values true and false to variables of a given

boolean expression in its CNF form to make the entire expression true.

Over the years many problems in NP have been proved to be in P (like Primality Testing).

Still, there are many problems in NP not proved to be in P. i.e. the question still remains

whether P=NP? NP Complete Problems helps in solving this question. They are a subset

of NP problems with the property that all other NP problems can be reduced to any of them in

polynomial time. So, they are the hardest problems in NP, in terms of running time. If it can

be showed that any NP-Complete problem is in P, then all problems in NP will be in P

(because of NP-Complete definition), and hence P=NP=NPC.

NP Hard Problems - These problems need not have any bound on their running time. If

any NP-Complete Problem is polynomial time reducible to a problem X, that problem X

belongs to NP-Hard class. Hence, all NP-Complete problems are also NP-Hard. In other

words if a NP-Hard problem is non-deterministic polynomial time solvable, it is a NP-

Complete problem. Example of a NP problem that is not NPC is Halting Problem.

If a NP-Hard problem can be solved in polynomial time then all NP-Complete can be solved

in polynomial time.

“All NP-Complete problems are NP-Hard but not all NP-Hard problems are not NP-

Complete.”NP-Complete problems are subclass of NP-Hard

The more conventional optimization version of Traveling Salesman Problem for finding the

shortest route is NP-hard, not strictly NP-complete.

https://en.wikipedia.org/wiki/Primality_test
https://en.wikipedia.org/wiki/Halting_problem

