Artificial Intelligence BAD402

Module 3
INFORMED (HEURISTIC) SEARCH STRATEGIES

Informed search strategy—one that uses problem-specific knowledge beyond the definition of the
problem itself—can find solutions more efficiently than can an uninformed strategy.
The general approach we consider is called best-first search. Best-first search is an instance of the
general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is selected for expansion
based on an evaluation function, f (n). The evaluation function is construed as a cost estimate, so the
node with the lowest evaluation is expanded first.

Most best-first algorithms include as a component of f a heuristic function, denoted h(n):

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

(Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the state at that node.)
For example, in Romania, one might estimate the cost of the cheapest path from Arad to Bucharest
via the straight-line distance from Arad to Bucharest.
Heuristic functions are the most common form in which additional knowledge of the problem is
imparted to the search algorithm.

3.1 Greedy best-first search

Greedy best-first search® tries to expand the node that is closest to the goal, on the grounds that this
is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the heuristic function;
that is, f (n) = h(n).
Let us see how this works for route-finding problems in Romania;
Use the straight- line distance heuristic, which we will call hs.p . If the goal is Bucharest, we
need to know the straight-line distances to Bucharest, which are shown in Figure 3.22.
For example, hsip (In(Arad)) = 366. Notice that the values of hs.p cannot be computed from
the problem description itself. Moreover, it takes a certain amount of experience to know that hs;p
is correlated with actual road distances and is, therefore, a useful heuristic.

Figure 3.23 shows the progress of a greedy best-first search using hs.p to find a path from Arad to
Bucharest.

e The first node to be expanded from Arad will be Sibiu because it is closer to Bucharest than
either Zerind or Timisoara.

e The next node to be expanded will be Fagaras because it is closest.
e Fagaras in turn generates Bucharest, which is the goal.

For this particular problem, greedy best-first search using hsip finds a solution without ever
expanding a node that is not on the solution path; hence, its search cost is minimal.

It is not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer than
the path through Rimnicu Vilcea and Pitesti.

This shows why the algorithm is called “greedy”—at each step it tries to get as close to the goal as
it can.

vtucode.in

Artificial Intelligence

BAD402

Arud
Bucharest
Cralova
Drobeta
Flork
Fagaras
Gurgo
Hirsora
lav
Lugoy

Figure 3.22 Valvesof s s

(a) The initial state

(h) After expanding Arad

L)
0
LCH)
28
16l
176
)
151
%

24

Mechadia
Neamt

Oradea

PMresti

Rimmnicn Vileea
Sibin
limisoara

| roceni

Vaslui

Zerind

straight-line distances to Bucharest

P At >

36

180
LU
193

J53

A-‘u

30
1N
14

Figure 3.23 Stages inm a greedy best-first tree search for Bucharest with the straight-line
distance heuristic /i ;. . Nodes are labeled with their h-values.

3.2 A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A* search (pronounced “A-star search™).
It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost to get from the

node to the goal:
f(n) = g(n)+ h(n) .

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost of the

cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the node with the
lowest value of g(n) + h(n). It turns out that this strategy is more than just reasonable: provided that

the heuristic function h(n) satisfies certain conditions, A* search is both complete and optimal.

vtucode.in

Artificial Intelligence

BAD402

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329

(c) After expanding Sibiu

447=118+329

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

Climisoars

447=118+329

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

418=418+0 615=455+160 607=414+193

h values are the straight-line distances to Bucharest taken from Figure 3.22.

Figure 3.24 Stages in an A" search for Bucharest. Nodes are labeled with f = g+ h. The

Conditions for optimality: Admissibility and consistency
1. Admissible heuristic

The first condition we require for optimality is that h(n) be an admissible heuristic. An admissible
heuristic is one that never overestimates the cost to reach the goal. Because g(n) is the actual cost
to reach n along the current path, and f (n)=g(n) + h(n), we have as an immediate consequence that

f (n) never overestimates the true cost of a solution along the current path through n.

vtucode.in

Artificial Intelligence BAD402

Admissible heuristics are by nature optimistic because they think the cost of solving the
problem is less than it actually is. An obvious example of an admissible heuristic is the straight-
line distance hs.p that we used in getting to Bucharest. Straight-line distance is admissible because
the shortest path between any two points is a straight line, so the straight line cannot be an
overestimate. In Figure 3.24, we show the progress of an A*tree search for Bucharest. The values
of g are computed from the step costs in Figure 3.2, and the values of hs.p are given in Figure 3.22.
Notice in particular that Bucharest first appears on the frontier at step (e), but it is not selected for
expansion because its f -cost (450) is higher than that of Pitesti (417). Another way to say this is
that there might be a solution through Pitesti whose cost is as low as 417, so the algorithm will not
settle for a solution that costs 450.

2. Consistency

A second, slightly stronger condition called consistency (or sometimes monotonicity) is required
only for applications of Ax to graph search. A heuristic h(n) is consistent if, for every node n and
every successor n' of n generated by any action a, the estimated cost of reaching the goal from n is no
greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n':

h(n) <c(n, a, n*)+ h(n) .

This is a form of the general triangle inequality, which stipulates that each side of a triangle cannot
be longer than the sum of the other two sides. Here, the triangle is formed by n, nt, and the goal G,
closest to n.
For an admissible heuristic, the inequality makes perfect sense: if there were a route from n to G, via
n' that was cheaper than h(n), that would violate the property that h(n) is a lower bound on the cost to
reach Gn.
Optimality of A*
A* has the following properties: the tree-search version of A«is optimal if h(n) is admissible, while
the graph-search version is optimal if h(n) is consistent.

The first step is to establish the following: if h(n) is consistent, then the values of
f (n) along any path are nondecreasing. The proof follows directly from the definition of
consistency. Suppose n' is a successor of n; then g(n®)= g(n)+ c(n, a, n') for some action a, and we
have

f(n) = g(n)+ h(n) = g(n)+ c(n, a, n’)+ h(n) = g(n)+ h(n) = f(n) .

The next step is to prove that whenever A+ selects a node n for expansion, the optimal path to that
node has been found. Were this not the case, there would have to be another frontier node n' on the
optimal path from the start node to n, by the graph separation property of GRAPH-SEARCH,;
because f is nondecreasing along any path, n* would have lower f -cost than n and would have been
selected first.

The fact that f -costs are nondecreasing along any path also means that we can draw contours
in the state space, just like the contours in a topographic map. Figure 3.25 shows an example. Inside
the contour labeled 400, all nodes have f (n) less than or equal to 400, and so on. Then, because A*
expands the frontier node of lowest f -cost, we can see that an A*search fans out from the start node,
adding nodes in concentric bands of increasing f-cost.

If C* is the cost of the optimal solution path, then we can say the following:

« A*expands all nodes with f(n) < C~.
« A*might then expand some of the nodes right on the “goal contour” (where f(n) = C*) before
selecting a goal node.

vtucode.in 4

Artificial Intelligence

BAD402

Figure 3.25

Map of Romansa showing coatours mt f = 3

400, and J

120, with

Arad as the start stase. Nodes inside a

given coatoar have f-c

wis kess than or equal 1o the

comtour value

Completeness requires that there be only finitely many nodes with cost less than or equal to
C+, acondition that is true if all step costs exceed some finite E and if b is finite.
Notice that A* expands no nodes with f(n) > C*
Algorithms that extend search paths from the root and use the same heuristic information—A*is
optimally efficient for any given consistent heuristic. That is, no other optimal algorithm is guaran-
teed to expand fewer nodes than A* (except possibly through tie-breaking among nodes with f (n)=
C*). This is because any algorithm that does not expand all nodes with f (n) < C*runs the risk of
missing the optimal solution.
For problems with constant step costs, the growth in run time as a function of the optimal solution
depth d is analyzed in terms of the absolute error or the relative error of the heuristic.
e The absolute error is defined as A = h« — h, where h= is the actual cost of getting from the root
to the goal, and
e The relative error is defined as E = (h* — h)/hx.
The time complexity of A+ is exponential in the maximum absolute error, that is, O(b*). For constant
step costs, we can write this as O(b®®), where d is the solution depth. For almost all heuristics in
practical use, the absolute error is at least proportional to the path cost h*, so E is constant or growing
and the time complexity is exponential in d. We can also see the effect of a more accurate heuristic:
O(b*)=O((b)").

3.3 Memory-bounded heuristic search

The simplest way to reduce memory requirements for Ax is to adapt the idea of iterative deepening
to the heuristic search context, resulting in the iterative-deepening Ax (IDAx) algorithm. The main
difference between IDA* and standard iterative deepening is that the cutoff used is the f -cost (g + h)
rather than the depth; at each iteration, the cutoff value is the small- est f -cost of any node that
exceeded the cutoff on the previous iteration. IDAx is practical for many problems with unit step costs
and avoids the substantial overhead associated with keeping a sorted queue of nodes.
Recursive best-first search
Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to mimic the
operation of standard best-first search, but using only linear space.

e It uses the f-limit variable to keep track of the f -value of the best alternative path available

from any ancestor of the current node.
e If the current node exceeds this limit, the recursion unwinds back to the alternative path.
e As the recursion unwinds, RBFS replaces the f -value of each node along the path with a

vtucode.in 5

Artificial Intelligence BAD402

backed-up value—the best f -value of its children.
e RBFS remembers the f-value of the best leaf in the forgotten subtree and can therefore
decide whether it’s worth re expanding the subtree at some later time
Figure 3.27 shows how RBFS reaches Bucharest. RBFS is somewhat more efficient than IDA*, but
still suffers from excessive node regeneration.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL-STATE), o0)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
successors — |]
for each action in problem.ACTIONS(node.STATE) do
add CHILD-NODE(problem, node, action) into successors
if successors is empty then return failure, oo
for each s in successors do /* update f with value from previous search, if any */
s.f—max(s.g + s.h, node.f))
loop do
best — the lowest f-value node in successors
if best.f > f_limit then return failure, best.f
alternative — the second-lowest f-value among successors
result, best. f — RBFS(problem, best, min(f_limit, alternative))
if result # failure then return result

Figure 3.26 The algorithm for recursive best-first search.

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

526 417 553

(b) After unwinding back to Sibiu
and expanding Fagaras

591 450

(¢) After switching back to Rimmicu Vilcea
and expanding Pitesti

418 615 607

Figure 3.27 Stages in an RBFS search for the shortest route to Bucharest. The f-limit
value for each recursive call is shown on top of each current node, and every node is labeled
with its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c¢) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras: then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

vtucode.in 6

Artificial Intelligence BAD402

Limitations
IDA* and RBFS suffer from using too little memory.
e Between iterations, IDA* retains only a single number: the current f-cost limit.
e RBFS retains more information in memory, but it uses only linear space: even if more memory
were available, RBFS has no way to make use of it.
e Because they forget most of what they have done, both algorithms may end up re-expanding the
same states many times over.
e Furthermore, they suffer the potentially exponential increase in complexity associated with
redundant paths in graphs.

MAx(memory-bounded Ax)
Two algorithms that use all available memory are MAx* (memory-bounded Ax) and SMAx
(simplified MA*).
e SMA=x proceeds just like A, expanding the best leaf until memory is full. At this point, it
cannot add a new node to the search tree without dropping an old one.
¢ SMA= always drops the worst leaf node—the one with the highest f -value. Like RBFS, SMAx
then backs up the value of the forgotten node to its parent.
e The ancestor of a forgotten subtree knows the quality of the best path in that subtree.
e With this information, SMAx regenerates the subtree only when all other paths have been
shown to look worse than the path it has forgotten.
e Another way of saying is, if all the descendants of a node n are forgotten, then will not know
which way to go from n, but we will still have an idea of how worthwhile it is to go anywhere
from n.

3.4 HEURISTIC FUNCTIONS

We look at heuristics for the 8-puzzle, in order to shed light on the nature of heuristics in general.

» The average solution cost for a randomly generated 8-puzzle instance is about 22 steps.

» The branching factor is about 3. (When the empty tile is in the middle, four moves are
possible; when it is in a corner, two; and when it is along an edge, three.)

+ This means that an exhaustive tree search to depth 22 would look at about 3%~ 3.1x10%°
states.

» A graph search would cut this down by a factor of about 170,000 because only 91/2 =181,
440 distinct states are reachable.

7 2 4 1 2

5 6 3 1 5

3 3 1 6 7 3
Start State Goal State

Figure 3.28 A typical instance of the 8-puzzle. The solution is 26 steps long.
Here are two commonly used candidates:
* hl =the number of misplaced tiles.

vtucode.in 7

Artificial Intelligence BAD402

For Figure 3.28, all of the eight tiles are out of position, so the start state would have h1 = 8. hlis an
admissible heuristic because it is clear that any tile that is out of place must be moved at least once.

* h2 =the sum of the distances of the tiles from their goal positions.
Because tiles cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. This is sometimes called the city block distance or Manhattan distance. h2
is also admissible because all any move can do is move one tile one step closer to the goal. Tiles 1 to
8 in the start state give a Manhattan distance of

h2=3+1+2+2+2+3+3+2=18.

As expected, neither of these overestimates the true solution cost, which is 26.

I. The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b*

e If the total number of nodes generated by A* for a particular problem is N and the solution
depth is

e d, then b* is the branching factor that a uniform tree of depth d would have to have in order
to contain N + 1 nodes.

o Thus, N+1=1+b*+ (b *)%+ = = = +(b*)".

e For example, if A* finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92.

e A well designed heuristic would have a value of b* close to 1.

Search Cost (nodes generated) Effective Branching Factor

d IDS A*(hy) A*(hs) IDS A*(hy) A*(hs)
2 10 6 6 245 1.79 L.79
B 112 13 12 2.87 1.48 1.45
6 680 20 18 273 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 278 1.42 1.24
14 - 539 13 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
2 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the

ITERATIVE-DEEPENING-SEARCH and A* algorithms with h;, h,. Data are averaged over

100 instances of the 8-puzzle for each of various solution lengths d.

To test the heuristic functions h1 and hz, we generated 1200 random problems with solution lengths
from 2 to 24 (100 for each even number) and solved them with iterative deepening search and with
A*tree search using both hy and ha. Figure 3.29 gives the average number of nodes generated by each
strategy and the effective branching factor.

One might ask whether hy is always better than h1. The answer is “Essentially, yes.” It is easy to see
from the definitions of the two heuristics that, for any node n, h2(n) > hi(n). We thus say that h»
dominates h;. Domination translates directly into efficiency: A* using hz will never expand more
nodes than A* using h1,

ii. Generating admissible heuristics from relaxed problems

A problem with fewer restrictions on the actions is called a relaxed problem. The state-space
graph of the relaxed problem is a supergraph of the original state space because the removal of
restrictions creates added edges in the graph. Because the relaxed problem adds edges to the state

vtucode.in 8

Artificial Intelligence BAD402

space, any optimal solution in the original problem is, by definition, also a solution in the relaxed
problem; but the relaxed problem may have better solutions if the added edges provide short cuts.
Hence, the cost of an optimal solution to a relaxed problem is an admissible heuristic for the
original problem. Furthermore, because the derived heuristic is an exact cost for the relaxed
problem, it must obey the triangle inequality and is therefore consistent.

If a problem definition is written down in a formal language, it is possible to construct relaxed
problems automatically.'* For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B and B is blank, we can generate three relaxed
problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.

(b) A tile can move from square A to square B if B is blank.

(c) Atile can move from square A to square B.
From (a), we can derive h, (Manhattan distance). The reasoning is that ho would be the proper score
if we moved each tile in turn to its destination. The heuristic derived from (b) is h1 (misplaced tiles).
From (c), we can derive hy (misplaced tiles).
One problem with generating new heuristic functions is that one often fails to get a single “clearly
best” heuristic. If a collection of admissible heuristics hy. .. hnis available for a problem and none
of them dominates any of the others, which should we choose? As it turns out, we need not make a
choice. We can have the best of all worlds, by defining

h(n) = max{h(n),... , hm(n)}

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, h is admissible; it is also easy to prove that h is
consistent. Furthermore, h dominates all of its component heuristics.

iii. Generating admissible heuristics from subproblems: Pattern databases

Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
For example, Figure 3.30 shows a subproblem of the 8-puzzle instance. The subproblem involves
getting tiles 1, 2, 3, 4 into their correct positions.

* 2 4 1

2

* * 3 4 ¥
* 3 1 * * *
Start State Goal State
Figure 3.30 A subproblem of the 8-puzzle instance given in Figure 3.28. The task is to

get tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to
the other tiles.

The idea behind pattern databases is to store these exact solution costs for every possible subproblem
instance—in our example, every possible configuration of the four tiles and the blank. Then we
compute an admissible heuristic hpg for each complete state encountered during a search simply by
looking up the corresponding subproblem configuration in the database. The database itself is
constructed by searching back from the goal and recording the cost of each new pattern encountered;
the expense of this search is amortized over many subsequent problem instances.

vtucode.in 9

Artificial Intelligence BAD402

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8, for 2-
4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics can be combined,
as explained earlier, by taking the maximum value.

The heuristics obtained from the 1-2-3-4 database and the 5-6-7-8 could be added, since the
two subproblems seem not to overlap. This is not an admissible heuristic, because the solutions of
the 1-2-3-4 subproblem and the 5-6-7-8 subproblem for a given state will almost certainly share
some moves it is unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice
versa.

The sum of the two costs is still a lower bound on the cost of solving the entire problem is a
disjoint pattern databases.

iv. Learning heuristics from experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the state at
node n.

How could an agent construct such a function?

Solution: learn from experience.

Example:
Each optimal solution to an 8-puzzle problem provides examples from which h(n) can be learned.
Each example consists of a state from the solution path and the actual cost of the solution from that
point. From these examples, a learning algorithm can be used to construct a function h(n) that can
(with luck) predict solution costs for other states that arise during search. Techniques for doing just
this using neural nets, decision trees, and other methods.

Inductive learning methods work best when supplied with features of a state that are relevant
to predicting the state’s value, rather than with just the raw state description.

For example, the feature “number of misplaced tiles” might be helpful in predicting the actual
distance of a state from the goal. Let’s call this feature x1(n). We could take 100 randomly generated
8-puzzle configurations and gather statistics on their actual solution costs. We might find that when
x1(n) is 5, the average solution cost is around 14, and so on. Given these data, the value of x; can be
used to predict h(n). Of course, we can use several features. A second feature x2(n) might be “number
of pairs of adjacent tiles that are not adjacent in the goal state.” How should x1(n) and x2(n) be
combined to predict h(n)? A common approach is to use a linear combination:

h(n) = cixi(n)+ caxao(n) .
The constants c1 and ¢ are adjusted to give the best fit to the actual data on solution costs.

LOGICAL AGENTS

3.5 Knowledge—Dbased agents
* An intelligent agent needs knowledge about the real world for taking decisions and

reasoning to act efficiently.

» Knowledge-based agents are those agents who have the capability of maintaining an internal
state of knowledge, reason over that knowledge, update their knowledge after observations
and take actions. These agents can represent the world with some formal representation and
act intelligently.

» Knowledge-based agents are composed of two main parts:

» Knowledge-base and

vtucode.in 10

Artificial Intelligence BAD402

* Inference system.
» A knowledge-based agent must able to do the following:
1. An agent should be able to represent states, actions, etc.
2. An agent Should be able to incorporate new percepts
3. An agent can update the internal representation of the world
4. An agent can deduce the internal representation of the world
5. An agent can deduce appropriate actions
Knowledge base: It is a collection of sentences (here 'sentence’ is a technical term and it is not
identical to sentence in English). These sentences are expressed in a language which is called a
knowledge representation language. The Knowledge-base of KBA stores fact about the world.
Why use a knowledge base?
Knowledge-base is required for updating knowledge for an agent to learn with experiences and
take action as per the knowledge.
Inference system
Inference means deriving new sentences from old. Inference system allows us to add a new
sentence to the knowledge base. A sentence is a proposition about the world. Inference system
applies logical rules to the KB to deduce new information. Inference system generates new facts
so that an agent can update the KB.
Operations Performed by KBA.
Following are two operations which are performed by KBA in order to show the intelligent
behavior:
» TELL: This operation tells the knowledge base what it perceives from the environment.
» ASK: This operation asks the knowledge base what action it should perform.
A generic knowledge-based agent. Given a percept, the agent adds the percept to its knowledge base,
asks the knowledge base for the best action, and tells the knowledge base that it has in fact taken that
action.
function KB-AGENT(percept) returns an action
persistent: KB , a knowledge base
t , a counter, initially O, indicating time
Tell(KB, Make-Percept-Sentence(percept , t))
action <« Ask(KB, Make-Action-Query(t))
Tell(KB, Make-Action-Sentence(action, t))
t—t+1
return action
Each time when the function is called, it performs its three operations:
» Firstly it TELLs the KB what it perceives.
« Secondly, it asks KB what action it should take
» Third agent program TELLS the KB that which action was chosen.
« The MAKE-PERCEPT-SENTENCE generates a sentence as setting that the agent perceived
the given percept at the given time.
+ The MAKE-ACTION-QUERY generates a sentence to ask which action should be done at
the current time,
« MAKE-ACTION-SENTENCE generates a sentence which asserts that the chosen action was
executed.

vtucode.in 11

Artificial Intelligence BAD402

Various levels of knowledge-based agent:
A knowledge-based agent can be viewed at different levels which are given below:
1. Knowledge level
* Knowledge level is the first level of knowledge-based agent, and in this level, we need to
specify what the agent knows, and what the agent goals are. With these specifications, we can
fix its behavior. For example, suppose an automated taxi agent needs to go from a station A
to station B, and he knows the way from A to B, so this comes at the knowledge level.
2. Logical level:
« At this level, we understand that how the knowledge representation of knowledge is stored.
At this level, sentences are encoded into different logics. At the logical level, an encoding of
knowledge into logical sentences occurs. Example: Links(GoldenGateBridge, SanFrancisco,
MarinCounty).
3. Implementation level:
« This s the physical representation of logic and knowledge. At the implementation level agent
perform actions as per logical and knowledge level. At this level, an automated taxi agent
actually implement his knowledge and logic so that he can reach to the destination.

3.6 The Wumpus World environment

The Wumpus world is a cave which has 4/4 rooms connected with passageways. So there are total 16
rooms which are connected with each other. We have a knowledge-based agent who will go forward
in this world. The cave has a room with a beast which is called Wumpus, who eats anyone who enters
the room. The Wumpus can be shot by the agent, but the agent has a single arrow.

S 5555 —_—
4 Stench = e PIT
/———._ -
~ Brogze — —
“scittc _/’/'-E'r}f’.';
3 Slar;ch = PIT
NI
< ~/ Gold § f"
se5ss e
, | SEas Z ez
= Bresze = = Bresze =
| el PIT i
START

1 2 3 4
» The agent explores a cave consisting of rooms connected by passageways.
» Lurking somewhere in the cave is the Wumpus, a beast that eats any agent that enters its room.
« Some rooms contain bottomless pits that trap any agent that wanders into the room.
» Occasionally, there is a heap of gold in a room.
» The goal is to collect the gold and exit the world without being eaten.

PEAS description of Wumpus world:

Performance measure:
» 41000 reward points if the agent comes out of the cave with the gold.
+ -1000 points penalty for being eaten by the Wumpus or falling into the pit.
« -1 foreach action, and -10 for using an arrow.
» The game ends if either agent dies or came out of the cave.

vtucode.in 12

Artificial Intelligence BAD402

Environment:
* A 4*4 grid of rooms.
» The agent initially in room square [1, 1], facing toward the right.
» Location of Wumpus and gold are chosen randomly except the first square [1,1].
« Each square of the cave can be a pit with probability 0.2 except the first square.
Actions/Actuators:
e The agent can move Forward, TurnLeft by 90, or TurnRight by 90-.
e The agent dies a miserable death if it enters a square containing a pit or a live wumpus.
e [fan agent tries to move forward and bumps into a wall, then the agent does not move.
e The action Grab can be used to pick up the gold if it is in the same square as the agent.
e The action Shoot can be used to fire an arrow in a straight line in the direction the agent is
facing.
e The arrow continues until it either hits (and hence kills) the wumpus or hits a wall. The agent
has only one arrow, so only the first Shoot action has any effect.
e Finally, the action Climb can be used to climb out of the cave, but only from square [1,1].
Sensors:
The agent has five sensors, each of which gives a single bit of information:
e —In the square containing the wumpus and in the directly (not diagonally) adjacent squares,
the agent will perceive a Stench.
e —Inthe squares directly adjacent to a pit, the agent will perceive a Breeze.
e —In the square where the gold is, the agent will perceive a Glitter.
e —When an agent walks into a wall, it will perceive a Bump.
e —When the wumpus is killed, it emits a woeful Scream that can be perceived anywhere in the
cave.
e The percepts will be given to the agent program in the form of a list of five symbols;
For example: if there is a stench and a breeze, but no glitter, bump, or scream, the agent program
will get
[Stench, Breeze, None, None, None].
The Wumpus agent’s first step
The first step taken by the agent in the wumpus world.
(@) The initial situation, after percept [None, None, None, None, None].
(b) After one move, with percept [None, Breeze, None, None, None].

T4 27 37 77 - Agent T2 74 34 71
B = Breeze
G = Glitter, Gold
OK = Safe square
13 23 33 43 P = Pi 13 23 33 43
8 = Stench
V = Visited
W = Wumpus
1.2 22 32 42 12 2.2 3.2 42
P?
OK OK
K 21 EX 41 11 21 31 41
A P?
S
v D
OK OK OK OK

(a) (b)
¢ Now agent needs to move forward, so it will either move to [1, 2], or [2,1]. Let's suppose
agent moves to the room [2, 1], at this room agent perceives some breeze which means Pit is
around this room. The pit can be in [3, 1], or [2,2], so we will add symbol P? to say that, is
this Pit room?
e Now agent will stop and think and will not make any harmful move. The agent will go back

vtucode.in 13

Artificial Intelligence BAD402

to the [1, 1] room. The room [1,1], and [2,1] are visited by the agent, so we will use symbol
V to represent the visited squares.

e Atthe third step, now agent will move to the room [1,2] which is OK. In the room [1,2] agent
perceives a stench which means there must be a Wumpus nearby. But Wumpus cannot be in
the room [1,1] as by rules of the game, and also not in [2,2] (Agent had not detected any stench
when he was at [2,1]). Therefore agent infers that Wumpus is in the room [1,3], and in current
state, there is no breeze which means in [2,2] there is no Pit and no Wumpus. So it is safe, and
we will mark it OK, and the agent moves further in [2,2].

e At room [2,2], here no stench and no breezes present so let's suppose agent decides to move
to [2,3]. At room [2,3] agent perceives glitter, so it should grab the gold and climb out of the
cave.

Two later stages in the progress of the agent.
(a) After the third move, with percept [Stench, None, None, None, None]
(b) After the fifth move, with percept [Stench, Breeze, Glitter , None, None].

e The agent perceives a stench in [1,2], resulting in the state of knowledge. The stench in [1,2]
means that there must be a wumpus nearby. But the wumpus cannot be in [1,1], by the rules
of the game, and it cannot be in [2,2] (or the agent would have detected a stench when it was in
[2,1]). Therefore, the agent can infer that the wumpus is in [1,3]. The notation W! indicates this
inference. The lack of a breeze in [1,2] implies that there is no pit in [2,2].

e Theagent has now proved to itself that there is neither a pit nor awumpus in [2,2], so it is OK to
move there. assume that the agent turns and moves to [2,3]. In [2,3], the agent detects a glitter,
so it should grab the gold and then return home.

T4 24 34 v — Agent T4 24 34 W
2
B = Breeze P
G = Glitter, Gold
OK = Safe square
1'3\'\"! 23 3.3 43 ; :g;,nm 13 wy 23 33 pe 43
= Ste.
S G
vV = Visited B
W = Wumpus
1.2 22 3.2 42 1.2 s 22 32 42
s v v
oK OK OK OK
1.1 21B 31 P! 41 11 2‘I]3 31 - 41
v v v v
oK oK OK oK
(a) ()

3.7 Loqic

The fundamental concepts of logical representation and reasoning.
» Knowledge bases consist of sentences.
» Sentences are expressed according to the syntax of the representation language.
Example: “x +y =4 is a well-formed sentence, whereas “x4y+ =" is not
* Alogic must also define the semantics or meaning of sentences.
» The semantics defines the truth of each sentence with respect to each possible world
(model).
Example: the sentence “x + y =4"is true in a world where x is 2 and y is 2, but false in a world
where x islandyis 1.

vtucode.in 14

Artificial Intelligence BAD402

» The possible models are just all possible assignments of real numbers to the variables x and
y.

« Each such assignment fixes the truth of any sentence of arithmetic whose variables are x and
y.

« Ifasentence a is true in model m, say that m satisfies o or sometimes m is a model of a.

* The notation: M(a) to mean the set of all models of a.

* Notion of truth involves the relation of logical entailment between sentences—the idea that a
sentence follows logically from another sentence.
Mathematical notation: o |= B (sentence o entails the sentence f.)

» The formal definition of entailment is this: o |= f if and only if, in every model in which a is
true, B is also true.

a |= P if and only if M(a)) € M(P)

Figure 7.5 Possible models for the presence of pits in squares [1.2], [2.2], and [3.1]. The
KB corresponding to the observations of nothing in [1.1] and a breeze in [2.1] is shown by
the solid line. (a) Dotted line shows models of «v; (no pit in [1,2]). (b) Dotted line shows
models of cvo (no pit in [2.2]).

We can apply the same kind of analysis to the wumpus-world reasoning example given in the
preceding section. Consider the situation in Figure 7.3(b): the agent has detected nothing in [1,1]
and a breeze in [2,1]. These percepts, combined with the agent’s knowledge of the rules of the
wumpus world, constitute the KB. The agent is interested (among other things) in whether the
adjacent squares [1,2], [2,2], and [3,1] contain pits. Each of the three squares might or might not
contain a pit, so (for the purposes of this example) there are 23 =8 possible models. These eight
models are shown in Figure 7.5.

The KB can be thought of as a set of sentences or as a single sentence that asserts all the
individual sentences. The KB is false in models that contradict what the agent knows— for example,
the KB is false in any model in which [1,2] contains a pit, because there is no breeze in [1,1]. There
are in fact just three models in which the KB is true, and these are shown surrounded by a solid line
in Figure 7.5.

Let us consider two possible conclusions:
al = “There is no pitin [1,2].”
02 = “There is no pit in [2,2].”
By inspection, we see the following:
* In every model in which KB is true, al is also true.
Hence, KB |= al: there is no pit in [1,2].
* In some models in which KB is true, o2 is false.
Hence, KB |= a2: the agent cannot conclude that there is no pit in [2,2].
Figure 7.5 is called model checking because it enumerates all possible models to check that a is true
in all models in which KB is true, that is, that M(KB) € M(a).

vtucode.in 15

Artificial Intelligence BAD402

Formal notation:

If an inference algorithm i can derive a from KB, we write

which is pronounced “a is derived from KB by i”” or “i derives a from KB.”

.
Sentences _ Sentence
Entails
R - g ¢
eprexeurmmu 3 a
_____________ R - I
a @

World

Aspects of the ™ Aspect of the
real world Follows real world

Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process
of constructing new physical configurations from old ones. Logical reasoning should en-
sure that the new configurations represent aspects of the world that actually follow from the
aspects that the old configurations represent.

Sound or truth- preserving
An inference algorithm that derives only entailed sentences is called sound or truth-

preserving.

Completeness
The property of completeness is also desirable: an inference algorithm is complete if it can

derive any sentence that is entailed.
Grounding
The grounding—the connection between logical reasoning processes and the real
environment in which the agent exists.
This correspondence between world and representation is illustrated in Figure 7.6

3.8 PROPOSITIONAL LOGIC:AVERY SIMPLE LOGIC

Syntax
o The syntax of propositional logic defines the allowable sentences.
o The atomic sentences consist of a single proposition symbol.

o Each such symbol stands for a proposition that can be true or false. Use symbols that start
with an uppercase letter and may contain other letters or subscripts, for example: P, Q, R,
W31 3 and North.

o Complex sentences are constructed from simpler sentences, using parentheses and logical
connectives.

o There are five connectives in common use:
e - (not). A sentence such as =W 3 is called the negation of W1 3. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

e A (and). A sentence whose main connective is A, such as Wi3 A P33, is called a
conjunction.

e v (or). Asentence using V, such as (W1,3AP3,1)VW2,2, is a disjunction of the disjunction

vtucode.in 16

Artificial Intelligence BAD402

(W1,3 AP3,1) and W2,2.

e = (implies). A sentence such as (W13 A P31) = =Wz is called an implication
.Implications are also known as rules or if-then statements. The implication symbol is
sometimes written in other books as o or —.

e o (ifand only if). The sentence W13 < =Wa is a biconditional. Some other books
write this as =.

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — True| False | P| Q| R| ...
ComplexSentence — (Sentence)| [Sentence]
» Sentence
Sentence N\ Sentence
Sentence V Sentence
Sentence => Sentence

Sentence <> Sentence

OPERATOR PRECEDENCE s WALV, =S

Figure 7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic,
along with operator precedences. from highest to lowest.

Semantics

» The semantics defines the rules for determining the truth of a sentence with respect to a
particular model.

« In propositional logic, a model simply fixes the truth value—true or false—for every
proposition symbol.

For example,

If the sentences in the knowledge base make use of the proposition symbols P12, P22, and P31, then
one possible model is

ma = {P1, = false, P22 = false, P31 = true} .

The semantics for propositional logic must specify how to compute the truth value of any sentence,
given a model.

Atomic sentences are easy:
« True is true in every model and False is false in every model.
« The truth value of every other proposition symbol must be specified directly in the
model.
For example, in the model m1 given earlier, P1,2 is false.

For complex sentences, we have five rules, which hold for any subsentences P and Q in any model m
(here “iff” means “if and only if”):
e =P istrue iff P is false in m.
P A Qs true iff both P and Q are true in m.
P v Qs true iff either P or Q is true in m.
P = Q istrue unless P is true and Q is false in m.

vtucode.in 17

Artificial Intelligence

BAD402

e« P & Qistrueiff P and Q are both true or both false in m.

P Q P ParQ PvQ P = P =0
false false true false false true frie
false true true false true true false
frue false false false true false false
trie true false true trie true frue

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for

example, the value of P () when P is true and () is false, first look on the left for the row

where F is {rue and () is false (the third row). Then look in that row under the P () column
to see the result: frue.

A simple knowledge base

Pxy Is true if there is a pit in [X, y].

Wiy is true if there is a wumpus in [, y], dead or alive.

Bx,y is true if the agent perceives a breeze in [X, y].

To construct a knowledge base for the wumpus world.

We need the following symbols for each [x, y] location:

Sxy s true if the agent perceives a stench in [X, y].

Thereisnopitin[1,1]: R1: —P11

We label each sentence Ri so that we can refer to them:

A square is breezy if and only if there is a pit in a neighboring square:

R2:B11 & (P12 VvV P21)

R3:B21 & (P11 V P22V P31)

leading up to the situation given in Figure.

A simple inference procedure

The preceding sentences are true in all wumpus worlds.

1,4 2,4 3,4 4,4
1,3 2,3 3.3 4.3 R5 . BZ 1
. 1
1,2 2,2 3,2 4,2
P?

OK
11 2,1 3.1) 4,1

v B

OK OK

R4:—B1,1

Focus first on the immutable aspects of the wumpus world, mutable aspects are focused later.

Include the breeze percepts for the first two squares visited in the specific world the agent is in,

vtucode.in

18

Artificial Intelligence

BAD402

e Our goal now is to decide whether KB |= o for some sentence a.

e Our first algorithm for inference is a model-checking approach:

o enumerate the models, and

o check that a is true in every model in which KB is true.

e Models are assignments of true or false toevery proposition symbol.

Wumpus-world example:

* The relevant proposition symbols are B11, B2,1, P1,1, P12, P21, P22, and P31,

* there are 27 = 128 possible models

* In three of these, KB is true

Bia| Boa| Pra| Pra| Poa | Po2| Psa | R Ry | Ry | Ry Rs | KB
false | false | false | false | false | false | false true | true | true | true | false || false
false | false | false | false | false | false | true true | true | false | true | false || false
false | true | false | false | false | false | false | true | true | false | true | true || false
false | true | false | false | false | false | true true | true | true | true | true true
false | true | false | false | false | true | false | true | true | true | true/| true || true
false | true | false | false | false | true | true true | true | true | true | true || true
false | true | false | false | true | false | false true | false | false | true | true || false
true | true | true | true | true | true | true || false | true | true | false | true || false
Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true

if Ry through R are true, which occurs in just 3 of the 128 rows (the ones underlined in the
right-hand column). In all 3 rows, P o is false, so there is no pit in [1,2]. On the other hand,
there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(K B,) returns frue or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

symbols — a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols.{ })

else do

and
TT-CHECK-ALL(KB,a,rest,model U {P = false }))

P «— FIRST(symbols)
rest «— REST(symbols)
return (TT-CHECK-ALL(KB, a, rest, model U {P = true})

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY2(symbols) then
if PL-TRUE2(K B, model) then return PL-TRUE?(«, model)

else return true // when KB is false, always return true

Figure 7.10

A truth-table enumeration algorithm for deciding propositional entailment.

The algorithm is sound because it implements directly the definition of entailment, and
complete because it works for any KB and « and always terminates—there are only finitely
many models to examine. If KB and o contain nsymbols in all, then there are 2" models. Thus,
the time complexity of the algorithm is O(2"). The space complexity is only O(n) because the
enumeration is depth-first.

vtucode.in

19

Artificial Intelligence BAD402

3.9 Reasoning patterns in Propositional Logic (Propositional Theorem Proving)

Learn how entailment can be done by theorem proving—applying rules of inference directly to the
sentences in our knowledge base to construct a proof of the desired sentence without consulting models.
Additional concepts related to entailment:
1. logical equivalence (o = f): two sentences « and f are logically equivalent if they are true in the
same set of models.
For example, we can easily show (using truth tables) that P A Q and Q A P are logically equivalent.
Standard logical equivalences : The symbols «, £, and y stand for arbitrary sentences of
propositional logic.

(aAfB) = (BAa) commutativity of A
(aVv @) = (BVa) commutativity of V
((aAB)Ay) = (aA(BA~)) associativity of A
((aVB)Vy) = (aV(3V~y)) associativity of V
—(—a) = a double-negation elimination
(o« = 3) = (=8 = —a) contraposition
(@ = 3) = (—aV /3) implication elimination
(o & 3) = ((a«a = B)A(F = «a)) biconditional elimination
-(aAfB) = (—aV-3) DeMorgan
-(aV @) = (—aA—-3) De Morgan
(aA(BVY) = ((aAN3)V (axAy)) distributivity of A over V
(av(BAy) = ((avB)A(aVy)) distributivity of V over A
Figure 7.11 Standard logical equivalences. The symbols ¢, 3, and 4 stand for arbitrary
sentences of propositional logic.

An alternative definition of equivalence is as follows: any two sentences a and are equivalent
only if each of them entails the other:
a=p ifandonlyif a|=pandp|=a.
2. Validity. Asentence is valid if it is true in all models. For example, the sentence P v =P is valid.
Valid sentences are also known as tautologies—they are necessarily true.
For any sentences o and £, a |= g if and only if the sentence (« = p) is valid

if o |= 8 by checking that (a = p) is true in every model
3. The final concept we will need is satisfiability. A sentence is satisfiable if it is true in, or
satisfied by, some model. For example, the knowledge base given earlier, (RtAR2AR3AR4A
Rs), is satisfiable because there are three models in which it is true,

Validity and satisfiability are of course connected: « is valid iff -o is unsatisfiable;
contrapositively, « is satisfiable iff =« is not valid. We also have the following useful result:

a |= g if and only if the sentence (a A =f) is unsatisfiable.
Proving g from o by checking the unsatisfiability of (a A =) corresponds exactly to the standard
mathematical proof technique is called proof by refutation or proof by contradiction. One assumes
a sentence f to be false and shows that this leads to a contradiction with known axioms a. This
contradiction is exactly what is meant by saying that the sentence (a A —f) is unsatisfiable.

Inference and proofs

vtucode.in 20

Artificial Intelligence BAD402

Inference rules that can be applied to derive a proof—a chain of conclusions that leads to the desired
goal.

e The best-known rule is called Modus Ponens (Latin mode that affirms) and is written
a = [3, Q
The notation means that, whenever any sentences of the form o = £ and « are given, then
the sentence S can be inferred.

For example,

if (WumpusAhead A WumpusAlive) = Shoot and (WumpusAhead A WumpusAlive) are given, then
Shoot can be inferred.

e Another useful inference rule is And-Elimination, which says that, from a conjunction, any
of the conjuncts can be inferred:
alf

@}

For example, from (WumpusAhead A WumpusAlive), WumpusAlive can be inferred.

e All of the logical equivalences in Figure 7.11 can be used as inference rules.
For example, the equivalence for biconditional elimination yields the two inference rules
a < 3 (o = F)A(B = a)

and
(o = G)A (0 = a) an a = 3

Let us see how these inference rules ad equivalences can be used in the wumpus world. We start

with the knowledge base containing Rz through Rs and show how to prove -P1 >, that is, there is no
pitin[1,2].

e First, apply biconditional elimination to R> to obtain
Re: (Bi1 = (P12VP21)) A (P12VP21) = Bi11).

e Then apply And-Elimination to Re to obtain
R7: ((P12V P21) = Bi11).

e Logical equivalence for contrapositives gives
Rs: (-B11 = =(Pi12V P21)).

e Now apply Modus Ponens with Rg and the percept R4 (i.e., =B1,1), to obtain
Ro: —(P12V P21).

e Finally, apply De Morgan’s rule, giving the conclusion
R10: -P1,2 A-P2,1 .

That is, neither [1,2] nor [2,1] contains a pit.

To apply any of the search algorithms to find a sequence of steps that constitutes a proof. Need to
define a proof problem as follows:

o INITIAL STATE: the initial knowledge base.

» ACTIONS: the set of actions consists of all the inference rules applied to all the sentences
that match the top half of the inference rule.

« RESULT: the result of an action is to add the sentence in the bottom half of the inference rule.

vtucode.in 21

Artificial Intelligence BAD402

» GOAL: the goal is a state that contains the sentence we are trying to prove.

Proof by resolution

A single inference rule, resolution, that yields a complete inference algorithm when coupled with
any complete search algorithm.
Begin by using a simple version of the resolution rule in the wumpus world.
Let us consider the steps leading up to figure given below: the agent returns from [2,1] to [1,1]
and then goes to [1,2], where it perceives a stench, but no breeze.

23 33 43

I? 22 32 4,2
S

OK

1 1
1 21y [, e

i v
OK OK

Add the following facts to the knowledge base:

R11: -B1,2.

R12:B12 < (P1,1VvP22VP13).
By the same process that led to Rio earlier, we can now derive the absence of pits in [2,2] and [1,3]
(remember that [1,1] is already known to be pitless):

R13:-P2,2.

R14 : -P1,3.
We can also apply biconditional elimination to Rs, followed by Modus Ponens with Rs, to obtain
the fact that there is a pit in [1,1], [2,2], or [3,1]:

Ri5:P1,1VP22VP31.
Now comes the first application of the resolution rule: the literal =P in R13 resolves with
the literal P22 in Ris to give the resolvent

Ri6 : P11 VP31.
In English; if there’s a pit in one of [1,1], [2,2], and [3,1] and it’s not in [2,2], then it’s in [1,1] or
[3,1]. Similarly, the literal =P1 1 in R1 resolves with the literal P11 in Rs to give

R17 : P3,1 .
In English: if there’s a pit in [1,1] or [3,1] and it’s not in [1,1], then it’s in [3,1]. These last two
inference steps are examples of the unit resolution inference rule,

LN N m
SRVARERE SRV FER VPSRV

where each | is a literal and li and m are complementary literals (i.e., one is the negation of the
other). Thus, the unit resolution rule takes a clause—a disjunction of literals—and a literal and
produces a new clause. Note that a single literal can be viewed as a disjunction of one literal, also

known as a unit clause.
The unit resolution rule can be generalized to the full resolution rule,

vtucode.in 22

Artificial Intelligence BAD402

OV - N, mi V-V omy,
GOV - VL gV g VoV g Vo N g Vo VoV omy,
where li and m; are complementary literals. This says that resolution takes two clauses and produces
a new clause containing all the literals of the two original clauses except the two complementary
literals.
For example, we have

P1,1vP31, -P11Vv-P22 _

P3,1Vv-P22

There is one more technical aspect of the resolution rule: the resulting clause should contain only one
copy of each literal. The removal of multiple copies of literals is called factoring.
For example, if we resolve (A v B) with (A v =B), we obtain (A v A), which is reduced to just A.

Conjunctive normal form

A sentence expressed as a conjunction of clauses is said to be in conjunctive normal form or CNF.
A procedure for converting to CNF is illustrate the procedure by converting the sentence B1,1 < (P12
vV P21) into CNF.

The steps are as follows:
1. Eliminate <, replacing a & gwith(a = A (B = a).
(Bu1 = (P1,2V P21)) A((P1,2V P2,1) = Baii).

2. Eliminate =, replacing o = £ with -a Vv S
(=B1,1V P1,2V P2,1) A (—=(P1,2 V P2,1) V B1,1) .

3. CNF requires - to appear only in literals, so we “move — inwards” by repeated appli- cation of
the following equivalences from Figure 7.11:

=(-a) = o (double-negation elimination)
=(a A p) = (ma V =) (De Morgan)
=(a Vv) = (-a A =) (De Morgan)

In the example, we require just one application of the last rule:
(—-31,1 V P12V Pz,1) A ((—-P1,2 A —-Pz,l) \V/ 31,1) .
4. Now we have a sentence containing nested A and Vv operators applied to literals. We
apply the distributivity law from Figure 7.11, distributing v over A wherever possible.
(-B1,1V P12V P21) A(—=P12V B1,1) A(-P2,1V B1,1).

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to
read, but it can be used as input to a resolution procedure.

A resolution algorithm

A resolution algorithm is shown in Figure 7.12.
e First, (KB A —a) is converted into CNF.

vtucode.in 23

Artificial Intelligence BAD402

e Then, the resolution rule is applied to the resulting clauses.

e Each pair that contains complementary literals is resolved to produce a new clause, which
is added to the set if it is not already present.

The process continues until one of two things happens:

« there are no new clauses that can be added, in which case KB does not entail «; or,
« two clauses resolve to yield the empty clause, in which case KB entails .

function PL-RESOLUTION(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses — the set of clauses in the CNF representation of KB A —a
new — { }
loop do
for each pair of clauses C;, C; in clauses do
resolvents < PL-RESOLVE(C}, Cj)
if resolvents contains the empty clause then return true
new «— new U resolvents
if new C clauses then return false
clauses — clauses U new

Figure 7.12 A simple resolution algorithm for propositional logic. The function
PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.

Apply the resolution procedure to a very simple inference in the wumpus world. When the agent is in

[1,1], there is no breeze, so there can be no pits in neighboring squares. The relevant knowledge base
is

KB = R2 N R4 = (Bl,l {—% (P1,2 Vv Pz’l)) N _'Bl,l

and wish to prove a which is, say, =P12. When we convert (KB A -a) into CNF, we obtain the clauses
shown at the top of Figure 7.13.

2Py, v By By vPia VP

By v P,V B, PiaV Py v Py BV Py VB, PiaVv Py voP, P2 2P

Figure 7.13 Partial application of PL-RESOLUTION to a simple inference in the wumpus
world. =P 5 is shown to follow from the first four clauses in the top row.

Completeness of resolution

To conclude our discussion of resolution, we now show why PL-RESOLUTION is complete. To do this,
the resolution closure RC (S) of a set of clauses S is introduced, which is the set of all clauses
derivable by repeated application of the resolution rule to clauses in S or their derivatives.

vtucode.in 24

Artificial Intelligence BAD402

The completeness theorem for resolution in propositional logic is called the ground resolution
theorem: If a set of clauses is unsatisfiable, then the resolution closure of those clauses contains
the empty clause.

This theorem is proved by demonstrating its contrapositive: if the closure RC (S) does not contain the
empty clause, then S is satisfiable.
Construct a model for S with suitable truth values for P1,... , Pk. The construction procedure is as
follows:
For i from 1 to k,
—If a clause in RC (S) contains the literal =Pi and all its other literals are false under the
assignment chosen for P1,... , Pi—1, then assign false to Pi.
—Otherwise, assign true to Pi.

Forward and backward chaining

e The forward-chaining algorithm PL-FC-ENTAILS?(KB, q) determines if a single proposition
symbol g—the query—is entailed by a knowledge base of definite clauses.
e It begins from known facts (positive literals) in the knowledge base.
e [fall the premises of an implication are known, then its conclusion is added to the set of known
facts.
For example,

e if L1,1 and Breeze are known and (L1,1 A Breeze) = B1,1 is in the knowledge base, then
B1,1 can be added.
e This process continues until the query q is added or until no further inferences can be made.

The detailed algorithm is shown in Figure 7.15; the main point to remember is that it runs in linear
time.

function PL-FC-ENTAILS?(KB. ¢) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count < a table, where count[c] is the number of symbols in ¢’s premise
inferred < a table, where inferred|s] is initially false for all symbols
agenda < a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < PoP(agenda)
if p = ¢ then return true
if inferred|p) = false then
inferred|p]| < true
for each clause ¢ in KB where p is in ¢.PREMISE do
decrement count|c]
if count|[c] = 0 then add ¢.CONCLUSION to agenda
return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps

vtucode.in 25

Artificial Intelligence BAD402

The agenda keeps track of symbols known to be true but not yet “processed.” The count table
keeps track of how many premises of each implication are as yet unknown. Whenever a new
symbol p from the agenda is processed, the count is reduced by one for each implication in whose
premise p appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to theagenda.
Finally, we need to keep track of which symbols have been processed; a symbol that is already
in the set of inferred symbols need not be added to the agenda again. This avoids redundant work
and prevents loops caused by implicationssuchasP = Qand Q= P.

The best way to understand the algorithm is through an example and a picture. Figure 7.16(a) shows
a simple knowledge base of Horn clauses with A and B as known facts. Figure 7.16(b) shows the
same knowledge base drawn as an AND-OR graph.

P=Q
LANM = P /2
BAL = M
AANP = L M
ANB = L
A
B
A B
(a) (b)

Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND—OR graph.

In AND-OR graphs, multiple links joined by an arc indicate a conjunction—every link must
be proved—while multiple links without an arc indicate a disjunction—any link can be
proved.

It is easy to see how forward chaining works in the graph.

It is easy to see that forward chaining is sound: every inference is essentially an application
of Modus Ponens.

Forward chaining is also complete: every entailed atomic sentence will be derived.

Forward chaining is an example of the general concept of data-driven reasoning—that is,
reasoning in which the focus of attention starts with the known data.

It can be used within an agent to derive conclusions from incoming percepts, often without a
specific query in mind.

Backward chaining is a form of goal-directed reasoning. It is useful for answering specific questions
such as “What shall | do now?”” and “Where are my keys?”

vtucode.in

26

