
MODULE –II DBMS –BCS403

Page 1

Database

Module 2: The Relational Data Model

Relational Model Concepts

The principles of the relational model were first outlined by Dr. E.F. Codd in 1970 in a classic paper called

“A relational Model of Data for Large Shared Data Banks”. In this paper, Dr. Codd proposed the

relational model for the database.

The more popular models used at the time were hierarchical and network, or even simple flat file data

structures. Relational database management systems soon became very popular especially for their

ease of use and flexibility in structure. In addition, a number of innovative vendors, such as Oracle,

supplemented the RDBMS with a suite of powerful application development and user products,

providing a total solution.

Components of the Relational Model

• Collections of objects or relations that store the data

• A set of operators that can act on the relations to produce other relations

• Data integrity for accuracy and consistency
Definition of a Relational Database

A relational database is a collection of relations or two-dimensional tables.

EMP DEPT

EMPNO ENAME DEPTNO DEPTNO DNAME LOC

7839 King 10
10 Accounting New York

 20 Research Dallas

MODULE –II DBMS –BCS403

Page 2

A relational database is a collection of relations or two-dimensional tables to store information.

For Example, you might want to store information about all the employees in your company. In a

relational database, you create several tables to store different pieces of information about your

employees, such as an employee table, a department table and a salary table

Informal Definitions

● Informally, a relation looks like a table of values.
● A relation typically contains a set of rows.
● The data elements in each row represent certain facts that correspond to a real-world entity or

relationship.
● In the formal model, rows are called tuples

● Each column has a column header that gives an indication of the meaning of the data items in
that column.

● In the formal model, the column header is called an attribute name (or just attribute).

Example of a Relation

● The data type describing the types of values that can appear in each columns is called a domain.

● Key of a Relation:

● Each row has a value of a data item (or set of items) that uniquely identifies that row in
the table called the key

Eg:- In the STUDENT table, SSN is the key.

● Sometimes row-ids or sequential numbers are assigned as keys to identify the rows in a
table called artificial key or surrogate key

MODULE –II DBMS –BCS403

Page 3

Formal Definitions – Schema

● The Schema (or description) of a Relation:
● Denoted by R(A1, A2,...... An)

● R is the name of the relation
● The attributes of the relation are A1, A2, An

● The degree of the relation is n (the number of its attributes).
● Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

● CUSTOMER is the relation name.
● Defined over the four attributes:Cust-id, Cust-name, Address, Phone#

● Each attribute has a domain or a set of valid values.

● For example, the domain of Cust-id is 6 digit numbers.

● The Schema (or description) of a Relation:
● Denoted by R(A1, A2,...... An)

● R is the name of the relation
● The attributes of the relation are A1, A2, An

● The degree of the relation is n (the number of its attributes).
● Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

● CUSTOMER is the relation name.
● Defined over the four attributes:Cust-id, Cust-name, Address, Phone#

● Each attribute has a domain or a set of valid values.
● For example, the domain of Cust-id is 6 digit numbers.

● A tuple is an ordered set of values (enclosed in angled brackets ‘< … >’).
● Each value is derived from an appropriate domain.
● A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for example:

● <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

● This is called a 4-tuple as it has 4 values.
● A tuple (row) in the CUSTOMER relation.

● A relation is a set of such tuples (rows).
● A domain has a logical definition:

● Example: “University_Seat_Number” is the set of 10 characters valid in VTU university.
● “Academic_Dept_Code” is a set of academic department codes such as ‘CS’, ‘IS’, ‘EC’,

etc,.
● A domain also has a data-type or a format defined for it.

● Dates have various formats such as year, month, day formatted as yyyy-mm-dd, or as
dd-mmm-yyyy etc.

● The attribute name designates the role played by a domain in a relation:
● Example: The domain Date may be used to define two attributes named “Invoice-date”

and “Payment-date” with different meanings.

MODULE –II DBMS –BCS403

Page 4

Characteristics of Relations

● Ordering of tuples in a relation r(R):
● Tuples ordering is not part of a relation definition because it is defined as a set of tuples.

● Many logical orders can be specified on the relation.
● There is no preference for one logical ordering over another.

● When a relation is implemented as a file, a physical ordering may be specified on the
records of the file.

● Ordering of values within each tuple:
● The tuple is an ordered list, so the ordering of values in a tuple is important.
● At a logical level, the order is not important as long as the correspondence between the

attribute and its value is mentioned.

● Values and NULLs in the tuple:

● All values are considered atomic (indivisible).

● Each value in a tuple must be from the domain of the attribute for that column.
● If tuple t = <v1, v2, …, vn> is a tuple (row) in the relation state r of R(A1, A2, …, An)
● Then each vi must be a value from dom(Ai)

● A special null value is used to represent values that are unknown or inapplicable to
certain tuples.

● Interpretation (Meaning) of a Relation:
- The relational schema can be interpreted as a declaration or type of assertion.

- For example, schema of the STUDENT relation interprets that, a student entity has Name,

USN, Home_phone, Address, Office_phone, Age, Gpa.

- Alternative interpretation of a relation schema is as a predicate, that values in each tuple

are interpreted as values that satisfy the predicate.

MODULE –II DBMS –BCS403

Page 5

Relational Model Notation

● R(A1, A2, …., An) denotes a relation schema R of degree n (n attributes).

● r(R) is a relation state of relation schema R.
● t[Ai] and t.Ai refer to the value vi in t for attribute Ai.

● The letters Q, R, S denote relation names.
● The letters q, r, s denote relation states.
● The letters t, u, v denote tuples.
● The dot notation R.A can be used to identify the attributes (e.g. Student.Name or Student.Age).

Relational model constraints

● Constraints on databases can generally be divided into three main categories:
- Inherent model-based or Implicit constraints:- Constraints that are inherent in the data

model.

- Schema-based or explicit constraints:- Constraints that can be directly expressed in schema of

the data model using DDL.

- Application-based or semantic constraints or business rules:- Constraints expressed and

enforced using application programs.

Schema-based constraints

● Schema based constraints in the relational model are:
● Domain constraints

● Key constraints and constraints on NULL values

● Entity integrity constraints

● Referential integrity constraints

● Domain constraint
● Every value in a tuple must be from the domain of its attribute and must be atomic (or

it could be null, if allowed for that attribute).
● Key Constraints

● As a relation is defined as a set of tuple, thus no two tuples can have the same
combination of values for all their attributes.

● Usually, there are other subset of attributes (superkey SK) with this constraint: ti[SK] ≠

tj[SK] 6 i, j

● It is called uniqueness constraint that no two distinct tuples in r can have the same
values for SK.

● A superkey can have redundant attributes.
● A key K of R is a superkey of R with the additional property that removing any attribute

A from K leaves a set of attributes K’ that is not a superkey of R.
● A key satisfies two constraints:
● - Two distinct tuples in any state of the relation cannot have identical values for (all)

attributes in the key.

MODULE –II DBMS –BCS403

Page 6

● - It is a minimal superkey – that is , a superkey from which we cannot remove any
attributes and still have the uniqueness property in condition 1 hold.

● Key is determined from the meaning of the attributes, and the property is time-
invariant.

● It must continue to hold when we insert new tuples in the relation

● Example:
● The attribute {SSN} in the Student relation is a key.
● Any set includes {SSN} is a superkey of the relation student. Eg:- {SSN, Name, Age}
● In general:
● Any key is a superkey (but not vice versa).
● Any set of attributes that includes a key is a superkey.
● A minimal superkey is also a key.
● A relation schema may have more than one key.
● Such keys are called the candidate keys.
● The primary key is one of the candidate keys which is selected to identify tuples in the

relation.
● The attributes that form the primary key are underlined in the schema.
● The primary key value is used to uniquely identify each tuple in a relation.

● Null Constraint:
● Not Null constraint specifies that an attribute must have a valid value (e.g. Student

name).

Relational Database Schema

● A relational database schema S is a set of relation schemas that belong to the same database.
● S is the name of the whole database schema.
● S = {R1, R2, …, Rm} and a set of integrity constraints IC.

● R1, R2, …, Rm are the names of the individual relation schemas within the database S.
● The integrity constraints are specified on a DB schema and are expected to hold on every DB

state.
● Example: Company Database

MODULE –II DBMS –BCS403

Page 7

Entity Integrity Constraints

● The primary key attributes PK of each relation schema R in S cannot have null values in any tuple
of r(R).

● This is because primary key values are used to identify the individual tuples.
● t[PK] s null for any tuple t in r(R).
● If PK has several attributes, null is not allowed in any of these attributes.

● Note: Other attributes of R may be constrained to disallow null values, even though they are
not members of the primary key.

Referential Integrity Constraints

● A constraint involving two relations

● The previous constraints involve a single relation.
● Used to specify a relationship among tuples in two relations:

● The referencing relation and the referenced relation.
● Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that

reference the primary key attributes PK of the referenced relation R2.
● A referential integrity constraint can be displayed in a relational database schema as a directed

arc from R1.FK to R2.PK.
● Referential integrity constraint is based on foreign key (FK) concept
● A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation R2 if it

satisfies the following two rules:

● The attributes in FK have the same domain(s) as the primary key attribute PK of R2.
● A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for

some tuple t2 in the current state r2(R2) (t1[FK]=t2[PK]) or is null.
● A foreign key can refer to its own relation.
● Referential integrity constraints typically arise from the relationship among the entities.

MODULE –II DBMS –BCS403

Page 8

Other Types of Constraints

● State constraints

- define the constraints that a valid state of the database must satisfy.

Ex: Domain constraints, Key Constraints, Entity Integrity constraints, Referential

Integrity constraints

Transition constraints

- defined to deal with state changes in the database.

Ex: the salary of an employee can only increase. Such constraints typically enforced by

the application programs or specified using active rules and triggers.

Update Operations on Relations

● The basic update operations of the relational model are:
● Insert
● Delete

● Update (or Modify)
● All integrity constraints specified on the database schema should not be violated by the update

operations.
● Several update operations may have to be grouped together.
● Updates may propagate to cause other updates automatically.

● This may be necessary to maintain integrity constraints.
● The basic update operations of the relational model are:

● Insert
● Delete

● Update (or Modify)
● All integrity constraints specified on the database schema should not be violated by the update

operations.
● Several update operations may have to be grouped together.
● Updates may propagate to cause other updates automatically.

● This may be necessary to maintain integrity constraints.

The Insert Operation

● INSERT may violate any of the four types of constraints:
● Domain constraint:

● if one of the attribute values provided for the new tuple is not of the specified
attribute domain.

● Key constraint:
● if the value of a key attribute in the new tuple already exists in another tuple in

the relation.
● Referential integrity:

● if a foreign key value in the new tuple references a primary key value that does

MODULE –II DBMS –BCS403

Page 9

not exist in the referenced relation.
● Entity integrity:

● if the primary key value is null in the new tuple.
● Example:-
● Operation

Insert <‘Vinod’, ’S’, ‘Joseph’, NULL, ‘1986-04-05’, ‘#123, Bangalore’, F,

28000, NULL, 4> into EMPLOYEE

Result: Violates Entity IC , so it is rejected.

● Operation

Insert <‘Alice’, ’J’, ‘Zelaya’, ‘999887777’, ‘1986-04-05’, ‘#334, Bangalore’, F,

28000, ‘98764321’, 4> into EMPLOYEE

Result: Violates Key IC , so it is rejected.

● Operation
Insert <‘Cecilia’, ’F’, ‘Kolonsky’, ‘677678989’, ‘1986-04-05’, ‘#454, Bangalore’,

F, 28000, ‘99876436’, 7> into EMPLOYEE

Result: Violates Referential IC , so it is rejected

The Delete Operation

● DELETE may violate only referential integrity:
● If the primary key value of the tuple being deleted is referenced from other tuples in the

database.
● Can be remedied by several actions: RESTRICT, CASCADE, SET NULL .

● RESTRICT option: reject the deletion.
● CASCADE option: propagate deletion by deleting tuples that reference

the tuple that is deleted.
● SET NULL option: set the foreign keys of the referencing tuples to NULL.

● One of the above options must be specified during database design for each foreign key
constraint.

● Example:
● Operation

Delete the WORKS_ON tuple with ESSN-’999887777’ and Pno=10.

Result: Acceptable. Deletes exactly one tuple

● Operation
Delete the EMPLOYEE tuple with SSN= ‘999887777’.

Result: Not Acceptable. Violates Referential IC.

MODULE –II DBMS –BCS403

Page 31

● Operation
Delete the EMPLOYEE tuple with SSN= ‘333445555’.

Result: Not Acceptable. Violates Referential IC.

The Update Operation

● UPDATE may violate domain constraint and NOT NULL constraint on an attribute being
modified.

● Any of the other constraints may also be violated, depending on the attribute being updated:
● Updating the primary key (PK):

● Similar to a DELETE followed by an INSERT.

● Need to specify similar options to DELETE.
● Updating a foreign key (FK):

● May violate referential integrity.
● Updating an ordinary attribute (neither PK nor FK):

● Can only violate domain constraints.

Operation

● Update the salary of an EMPLOYEE tuple with SSN =‘999887777’
to 28000.

Result: Acceptable

Operation

● Update the Dno of the EMPLOYEE tuple with SSN=‘999887777’ to 7.
Result: Violates Referential IC

● Operation

Update the SSN of the EMPLOYEE tuple with SSN=‘999887777’ to ‘987654321’.

Result: Violates Primary key constraints

ECS-165A 44

Relational Algebra

• Procedural language

• Queries in relational algebra are applied to relation instances,
result of a query is again a relation instance

• Six basic operators in relational algebra:

select � selects a subset of tuples from reln

project ⇡ deletes unwanted columns from reln

Cartesian Product ⇥ allows to combine two relations

Set-di↵erence � tuples in reln. 1, but not in reln. 2

Union [tuples in reln 1 plus tuples in reln 2

Rename ⇢ renames attribute(s) and relation

• The operators take one or two relations as input and give a
new relation as a result (relational algebra is “closed”).

3. Relational Model and Relational Algebra

Your text here 1

ludaesch

ECS-165A 45

Select Operation

• Notation: �
P

(r)

Defined as

�

P

(r) := {t | t 2 r and P (t)}
where

– r is a relation (name),
– P is a formula in propositional calculus, composed of

conditions of the form

<attribute> = <attribute> or <constant>

Instead of “=” any other comparison predicate is allowed
(6=, <,> etc).
Conditions can be composed through ^ (and), _ (or), ¬ (not)

• Example: given the relation r

A B C D

↵ ↵ 1 7
↵ � 5 7
� � 12 3
� � 23 10

�

A=B^D>5

(r)

A B C D

↵ ↵ 1 7
� � 23 10

3. Relational Model and Relational Algebra

ludaesch

ECS-165A 46

Project Operation

• Notation: ⇡
A

1

,A

2

,...,A

k

(r)

where A

1

, . . . , A

k

are attribute names and
r is a relation (name).

• The result of the projection operation is defined as the relation
that has k columns obtained by erasing all columns from r

that are not listed.

• Duplicate rows are removed from result because relations are
sets.

• Example: given the relations r

r

A B C

↵ 10 2
↵ 20 2
� 30 2
� 40 4

⇡

A,C

(r)

A C

↵ 2
� 2
� 4

3. Relational Model and Relational Algebra

ludaesch

ECS-165A 47

Cartesian Product

• Notation: r ⇥ s where both r and s are relations

Defined as r ⇥ s := {tq | t 2 r and q 2 s}

• Assume that attributes of r(R) and s(S) are disjoint, i.e.,
R \ S = ;.
If attributes of r(R) and s(S) are not disjoint, then the
rename operation must be applied first.

• Example: relations r, s:

r

A B

↵ 1
� 2

s

C D E

↵ 10 +
� 10 +
� 20 �
� 10 �

r ⇥ s

A B C D E

↵ 1 ↵ 10 +
↵ 1 � 10 +
↵ 1 � 20 �
↵ 1 � 10 �
� 2 ↵ 10 +
� 2 � 10 +
� 2 � 20 �
� 2 � 10 �

3. Relational Model and Relational Algebra

ludaesch

ludaesch

ECS-165A 48

Union Operator

• Notation: r [s where both r and s are relations

Defined as r [s := {t | t 2 r or t 2 s}

• For r [s to be applicable,

1. r, s must have the same number of attributes

2. Attribute domains must be compatible (e.g., 3rd column
of r has a data type matching the data type of the 3rd
column of s)

• Example: given the relations r and s

r

A B

↵ 1
↵ 2
� 1

s

A B

↵ 2
� 3

r [s

A B

↵ 1
↵ 2
� 1
� 3

3. Relational Model and Relational Algebra

ludaesch

ECS-165A 49

Set Di↵erence Operator

• Notation: r � s where both r and s are relations

Defined as r � s := {t | t 2 r and t 62 s}

• For r � s to be applicable,

1. r and s must have the same arity

2. Attribute domains must be compatible

• Example: given the relations r and s

r

A B

↵ 1
↵ 2
� 1

s

A B

↵ 2
� 3

r � s

A B

↵ 1
� 1

3. Relational Model and Relational Algebra

Bertram Ludaescher

ECS-165A 50

Rename Operation

• Allows to name and therefore to refer to the result of relational
algebra expression.

• Allows to refer to a relation by more than one name (e.g., if the
same relation is used twice in a relational algebra expression).

• Example:

⇢

x

(E)

returns the relational algebra expression E under the name x

If a relational algebra expression E (which is a relation) has
the arity k, then

⇢

x(A

1

,A

2

,...,A

k

)

(E)

returns the expression E under the name x, and with the
attribute names A

1

, A

2

, . . . , A

k

.

3. Relational Model and Relational Algebra

Bertram Ludaescher

ECS-165A 51

Composition of Operations

• It is possible to build relational algebra expressions using
multiple operators similar to the use of arithmetic operators
(nesting of operators)

• Example: �
A=C

(r ⇥ s)

r ⇥ s

A B C D E

↵ 1 ↵ 10 +
↵ 1 � 10 +
↵ 1 � 20 �
↵ 1 � 10 �
� 2 ↵ 10 +
� 2 � 10 +
� 2 � 20 �
� 2 � 10 �

�

A=C

(r ⇥ s)

A B C D E

↵ 1 ↵ 10 +
� 2 � 10 +
� 2 � 20 �

3. Relational Model and Relational Algebra

ludaesch

ECS-165A 52

Example Queries

Assume the following relations:

BOOKS(DocId, Title, Publisher, Year)

STUDENTS(StId, StName, Major, Age)

AUTHORS(AName, Address)

borrows(DocId, StId, Date)

has-written(DocId, AName)

describes(DocId, Keyword)

• List the year and title of each book.

⇡Year, Title(BOOKS)

• List all information about students whose major is CS.

�Major = ’CS’(STUDENTS)

• List all students with the books they can borrow.

STUDENTS⇥ BOOKS

• List all books published by McGraw-Hill before 1990.

�Publisher = ’McGraw-Hill’^Year<1990

(BOOKS)

3. Relational Model and Relational Algebra

ECS-165A 53

• List the name of those authors who are living in Davis.

⇡AName(�Address like ’%Davis%’(AUTHORS))

• List the name of students who are older than 30 and who are
not studying CS.

⇡StName(�Age>30

(STUDENTS))�
⇡StName(�Major=’CS’(STUDENTS))

• Rename AName in the relation AUTHORS to Name.

⇢AUTHORS(Name, Address)(AUTHORS)

3. Relational Model and Relational Algebra

ECS-165A 54

Composed Queries (formal definition)

• A basic expression in the relational algebra consists of either
of the following:

– A relation in the database
– A constant relation

(fixed set of tuples, e.g., {(1, 2), (1, 3), (2, 3)})

• If E
1

and E

2

are expressions of the relational algebra, then the
following expressions are relational algebra expressions, too:

– E

1

[E

2

– E

1

� E

2

– E

1

⇥ E

2

– �

P

(E

1

) where P is a predicate on attributes in E

1

– ⇡

A

(E

1

) where A is a list of some of the attributes in E

1

– ⇢

x

(E

1

) where x is the new name for the result relation
[and its attributes] determined by E

1

3. Relational Model and Relational Algebra

ludaesch

ludaesch

ECS-165A 55

Examples of Composed Queries

1. List the names of all students who have borrowed a book and
who are CS majors.

⇡StName(�STUDENTS.StId=borrows.StId

(�Major=’CS’(STUDENTS)⇥ borrows))

2. List the title of books written by the author ’Silberschatz’.

⇡Title(�AName=’Silberschatz’

(�has-written.DocId=BOOKS.DocID(has-written⇥BOOKS)))
or

⇡Title(�has-written.DocId=BOOKS.DocID

(�AName=’Silberschatz’(has-written)⇥ BOOKS))

3. As 2., but not books that have the keyword ’database’.

. . . as for 2. . . .
� ⇡Title(�describes.DocId=BOOKS.DocId

(�Keyword=’database’(describes)⇥ BOOKS))

4. Find the name of the youngest student.

⇡StName(STUDENTS)�
⇡S1.StName(�S1.Age>S2.Age(⇢S1(STUDENTS)⇥⇢S2(STUDENTS)))

5. Find the title of the oldest book.

⇡Title(BOOKS)�
⇡B1.Title(�B1.Year>B2.Year(⇢B1(BOOKS)⇥ ⇢B2(BOOKS)))

3. Relational Model and Relational Algebra

Bertram Ludaescher

ECS-165A 56

Additional Operators

These operators do not add any power (expressiveness) to the
relational algebra but simplify common (often complex and
lengthy) queries.

Set-Intersection \
Natural Join 1

Condition Join 1
C

(also called Theta-Join)
Division ÷
Assignment �

Set-Intersection

• Notation: r \ s

Defined as r \ s := {t | t 2 r and t 2 s}

• For r \ s to be applicable,

1. r and s must have the same arity
2. Attribute domains must be compatible

• Derivation: r \ s = r � (r � s)

• Example: given the relations r and s

r

A B

↵ 1
↵ 2
� 1

s

A B

↵ 2
� 3

r \ s

A B

↵ 2

3. Relational Model and Relational Algebra

Bertram Ludaescher

ECS-165A 57

Natural Join

• Notation: r 1 s

• Let r, s be relations on schemas R and S, respectively. The
result is a relation on schema R [S. The result tuples are
obtained by considering each pair of tuples t

r

2 r and t

s

2 s.

• If t
r

and t

s

have the same value for each of the attributes in
R \ S (“same name attributes”), a tuple t is added to the
result such that

– t has the same value as t
r

on r

– t has the same value as t
s

on s

• Example: Given the relations R(A,B,C,D) and
S(B,D,E)

– Join can be applied because R \ S 6= ;
– the result schema is (A,B,C,D,E)

– and the result of r 1 s is defined as

⇡

r.A,r.B,r.C,r.D,s.E

(�

r.B=s.B^r.D=s.D

(r ⇥ s))

3. Relational Model and Relational Algebra

ludaesch

ludaesch

ludaesch

ludaesch

Bertram Ludaescher

ECS-165A 58

• Example: given the relations r and s

r

A B C D

↵ 1 ↵ a
� 2 � a
� 4 � b
↵ 1 � a
� 2 � b

s

B D E

1 a ↵

3 a �

1 a �

2 b �

3 b ⌧

r 1 s

A B C D E

↵ 1 ↵ a ↵

↵ 1 ↵ a �

↵ 1 � a ↵

↵ 1 � a �

� 2 � b �

3. Relational Model and Relational Algebra

ECS-165A 59

Condition Join

• Notation: r 1
C

s

C is a condition on attributes in R [S, result schema is
the same as that of Cartesian Product. If R \ S 6= ; and
condition C refers to these attributes, some of these attributes
must be renamed.

Sometimes also called Theta Join (r 1
✓

s).

• Derivation: r 1
C

s = �

C

(r ⇥ s)

• Note that C is a condition on attributes from both r and s

• Example: given two relations r, s

r

A B C

1 2 3
4 5 6
7 8 9

s

D E

3 1
6 2

r 1B<D s

A B C D E

1 2 3 3 1
1 2 3 6 2
4 5 6 6 2

3. Relational Model and Relational Algebra

ludaesch

ludaesch

ludaesch

ludaesch

ECS-165A 60

If C involves only the comparison operator “=”, the condition
join is also called Equi-Join.

• Example 2:

r

A B C

4 5 6
7 8 9

s

C D

6 8
10 12

r 1C=SC (⇢S(SC,D)(s))
A B C SC D

4 5 6 6 8

3. Relational Model and Relational Algebra

Bertram Ludaescher

ECS-165A 61

Division

• Notation: r ÷ s

• Precondition: attributes in S must be a subset of attributes
in R, i.e., S ✓ R. Let r, s be relations on schemas R and
S, respectively, where

– R(A

1

, . . . , A

m

,B

1

, . . . , B

n

)

– S(B

1

, . . . , B

n

)

The result of r ÷ s is a relation on schema
R� S = (A

1

, . . . , A

m

)

• Suited for queries that include the phrase “for all”.

The result of the division operator consists of the set of tuples
from r defined over the attributes R � S that match the
combination of every tuple in s.

r ÷ s := {t | t 2 ⇡

R�S(r) ^ 8u 2 s : tu 2 r}

3. Relational Model and Relational Algebra

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

ECS-165A 62

• Example: given the relations r, s:

r

A B C D E

↵ a ↵ a 1
↵ a � a 1
↵ a � b 1
� a � a 1
� a � b 3
� a � a 1
� a � b 1
� a � b 1

s

D E

a 1
b 1

r ÷ s

A B C

↵ a �

� a �

3. Relational Model and Relational Algebra

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

ludaesch
Rectangle

ECS-165A 63

Assignment

• Operation (�) that provides a convenient way to express
complex queries.

Idea: write query as sequential program consisting of a series
of assignments followed by an expression whose value is
“displayed” as the result of the query.

• Assignment must always be made to a temporary relation
variable.

The result to the right of � is assigned to the relation
variable on the left of the �. This variable may be used in
subsequent expressions.

Example Queries

1. List each book with its keywords.

BOOKS 1 Descriptions

Note that books having no keyword are not in the result.

2. List each student with the books s/he has borrowed.

BOOKS 1 (borrows 1 STUDENTS)

3. Relational Model and Relational Algebra

Bertram Ludaescher

Bertram Ludaescher

ECS-165A 64

3. List the title of books written by the author ’Ullman’.

⇡Title(�AName=’Ullman’(BOOKS 1 has-written))

or

⇡Title(BOOKS 1 �AName=’Ullman’(has-written))

4. List the authors of the books the student ’Smith’ has borrowed.

⇡AName(�StName=’Smith’(has-written 1 (borrows 1 STUDENTS))

5. Which books have both keywords ’database’ and
’programming’?

BOOKS 1 (⇡DocId(�Keyword=’database’(Descriptions)) \
⇡DocId(�Keyword=’programming’(Descriptions)))

or

BOOKS 1 (Descriptions÷{(’database’), (’programming’)})

with {(’database’), (’programming’)}) being a constant
relation.

6. Query 4 using assignments.

temp1 � borrows 1 STUDENTS

temp2 � has-written 1 temp1

result � ⇡AName(�StName=’Smith’(temp2))

3. Relational Model and Relational Algebra

ludaesch
Pencil

ludaesch
Pencil

ludaesch
Pencil

ludaesch
Pencil

ECS-165A 65

Modifications of the Database

• The content of the database may be modified using the
operations insert, delete or update.

• Operations can be expressed using the assignment operator.
r

new

 � operations on(r
old

)

Insert

• Either specify tuple(s) to be inserted, or write a query whose
result is a set of tuples to be inserted.

• r � r [E, where r is a relation and E is a relational
algebra expression.

• STUDENTS � STUDENTS[{(1024, ’Clark’, ’CSE’, 26)}

Delete

• Analogous to insert, but � operator instead of [operator.

• Can only delete whole tuples, cannot delete values of particular
attributes.

• STUDENTS � STUDENTS� (�major=’CS’(STUDENTS))

Update

• Can be expressed as sequence of delete and insert operations.
Delete operation deletes tuples with their old value(s) and
insert operation inserts tuples with their new value(s).

3. Relational Model and Relational Algebra

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

Bertram Ludaescher

MODULE –II DBMS –BCS403

Page 11

ER-to-Relational Mapping

Step 1

» For each regular entity type E in the ER schema, create a relation R that includes all the simple

attributes of E

» For composite attributes, use the simple component attributes.

» Choose one of the key attributes of E as the primary key for R.

» If the chosen key was a composite, the set of simple attributes that form it will together be the

primary key of R.

Step 2

» For each weak entity type W in the ER schema with owner entity type E, create a relation R that

includes all simple attributes (or simple components of composites) of W.

» Include as foreign key attributes of R the primary key attribute of the relation that corresponds to the

owner entity type E.

» The primary key of R is the combination of the primary key of the owner and the partial key of the

weak entity type, if any.

Step 3

» For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that

correspond to the entity types participating in R.

» Choose one of the relations (say S). Include as a foreign key in S the primary key of T.

» It is better to choose an entity type with total participation in R for the role of S.

» Include the simple attributes of R as attributes of S.

Step 4

» For each binary 1:N relationship type R, identify the relation S that represents the entity type

participating at the N-side of the relationship

» Include as a foreign key in S the primary key of the relation T that represents the other entity type

participating in R.

» Include the simple attributes of R as attributes of S.

MODULE –II DBMS –BCS403

Page 12

Step 5

» For each binary M:N relationship type R, create a new relation S to represent R.

» Include as foreign key attributes in S the primary keys of the participating entity types.

» Their combination will form the primary key.

» Include any attributes of R as attributes of S.

Step 6

» For each multi-valued attribute A, create a new relation R.

» R will include an attribute corresponding to A, plus the primary key attribute K of the relation that has

A as an attribute.

» The primary key of R is the combination of A and K.

Step 7

» For each n-ary relationship type R, where n>2, create a new relation S.

» Include as foreign key attributes in S the primary keys of the relations that represent the participating

entity types

» Include any attributes of R.

» The primary key of S is usually a combination of all the foreign keys in S.

ER TO RELATIONAL MAPPING Example

The ER model is convenient for representing an initial, high-level database design. Given an ER diagram

describing a databa'3e, a standard approach is taken to generating a relational database schema that

closely approximatesthe ER design. We now describe how to translate an ER diagram into a collection of

tables with associated constraints, that is, a relational database schema.

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute of the entity set becomes

an attribute of the table. Note that we know both the domain of each attribute and the (primary) key of

an entity set.

MODULE –II DBMS –BCS403

Page 13

3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational model.

To represent a relationship, we must be able to identify each participating entity and give values to the

descriptive attributes of the relationship. Thus, the attributes of the relation include:

• The primary key attributes of each participating entity set, as foreign key fields.

• The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are no key constraints, this set

of attributes is a candidate key.

MODULE –II DBMS –BCS403

Page 14

CREATE TABLE Works_In2 (ssn CHAR(11), did INTEGER, address CHAR(20) , since DATE, PRIMARY KEY

(8sn, did, address), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (address) REFERENCES

Locations, FOREIGN KEY (did) REFERENCES Departments);

MODULE –II DBMS –BCS403

Page 15

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and somem of them are linked via arrows in the ER diagTam,

the key for anyone of these m entity sets constitutes a key for the relation to which the relationship set

is mapped.

The following SQL statement, defining a DepLMgr relation that captures the information in both

Departments and Manages, illustrates the approach to translating relationship sets with key constraints:

CREATE TABLE DepLMgr(did INTEGER, dname CHAR(20), budget REAL, ssn CHAR (11) , since DATE,

PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

3.5.4 Translating Relationship Sets with Participation Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets, Manages and "Works_In.

Every department is required to have a manager, due to the participation constraint, and at most one

manager, due to the key constraint.

MODULE –II DBMS –BCS403

Page 16

It also captures the participation constraint that every department must have a manager: Because ssn

cannot take on null values, each tuple of Dep-Mgr identifies a tuple in Employees (who is the manager).

The NO ACTION specification, which is the default and need not be explicitly specified, ensures that an

Employees tuple cannot be deleted while it is pointed to by a Dept-Mgr tuple.

3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and has a key constraint and

total participation.we must take into account that the weak entity has only a partial key. Also, when an

owner entity is deleted, we want all owned weak entities to be deleted.

3.5.6 Translating Class Hierarchies

MODULE –II DBMS –BCS403

Page 17

3.5.7 Translating ER Diagrams with Aggregation

MODULE –II DBMS –BCS403

Page 38

3.5.8 ER to Relational: Additional Examples

CREATE TABLE Dependents (pnameCHAR(20) , age INTEGER, policyid INTEGER, PRIMARY KEY (pname,

policyid), FOREIGN KEY (policyid) REFERENCES Policies ON DELETE CASCADE);

