Database Management System [BCS403]

Module-3 Database Design Theory

Database Normalization is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion Anomalies.
It is a multi-step process that puts data into tabular form by removing duplicated data from
the relation tables. This module discuss the basic and higher normal forms.

4.1 Objectives

To study the process of normalization and refine the database design
To normalize the tables upto 4NF and SNF

To study lossless and lossy join operations

To study inference rules

To study other dependencies and Normal Forms.

2 & ®. 0, 0,
LA X X I X IR X4

4.2 Introduction to DB design

Each relation schema consists of a number of attributes, and the relational database schema
consists of a number of relation schemas. So far, we have assumed that attributes are grouped
to form a relation schema by using the common sense of the database designer or by mapping
a database schema design from a conceptual data model such as the ER or Enhanced-ER
(EER) data model. These models make the designer identify entity types and relationship types
and their respective attributes, which leads to a natural and logical grouping of the attributes into
relations.
Database Design deals with coming up with a ‘good’ schema. There are two levels at which we
can discuss the goodness of relation schemas:
1. The logical (or conceptual) level—how users interpret the relation schemas and the
meaning of their attributes.
2. The implementation (or physical storage) level—how the tuples in a base relation are
stored and updated. This level applies only to schemas of base relations
An Example
= STUDENT relation with attributes: studName, rolINo, gender, studDept
= DEPARTMENT relation with attributes: deptName, officePhone, hod
= Several students belong to a department
= studDept gives the name of the student’s department

Correct schema:

Student Department

Darcn D

StudMame | rollNo gender studDept deptName officePhone HOD

L 4

Database Management System [BCS403]

Incorrect schema:
Studdept

StudName roliNo gender deptName officePhone HOD

Problems with bad schema

* Redundant storage of data:

- Office Phone & HOD info -stored redundantly once with each student that
belongs to the department

- wastage of disk space

* A program that updates Office Phone of a department
- must change it at several places
- more running time

- error -prone
4.3 Informal Design Guidelines for Relation Schemas

= Four informal guidelines that may be used as measures to determine the quality of
relation schema design:
1. Making sure that the semantics of the attributes is clear in the schema
2. Reducing the redundant information in tuples
3. Reducing the NULL values in tuples
4. Disallowing the possibility of generating spurious tuples

= These measures are not always independent of one another

4.3.1 Imparting Clear Semantics to Attributes in Relations

= _semantics of a relation refers to its meaning resulting from the interpretation of attribute
values in a tuple

= Whenever we group attributes to form a relation schema, we assume that attributes
belonging to one relation have certain real-world meaning and a proper interpretation
associated with them

= The easier it is to explain the semantics of the relation, the better the relation schema
design will be

Guideline 1

= Design a relation schema so that it is easy to explain its meaning
= Do not combine attributes from multiple entity types and relationship types into a single

relation

https:/Ilvtucode.in Page 3

Database Management System [BCS403]

« if a relation schema corresponds to one entity type or one relationship type, it is
straightforward to interpret and to explain its meaning
« if the relation corresponds to a mixture of multiple entities and relationships,

semantic ambiguities will result and the relation cannot be easily explained.

Examples of Violating Guideline 1

EMP_DEPT

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

T T

EMP_PROJ

SSN

PNUMBER | HOURS | ENAME PNAME PLOCATION

Fig: schema diagram for company database

Both the relation schemas have clear semantics

A tuple in the EMP_DEPT relation schema represents a single employee but includes
additional information— the name (Dname) of the department for which the employee
works and the Social Security number (Dmgr_ssn) of the department manager.

A tuple in the EMP_PROJ relates an employee to a project but also includes the
employee name (Ename), project name (Pname), and project location (Plocation)
logically correct but they violate Guideline 1 by mixing attributes from distinct real-world
entities:

+ EMP_DEPT mixes attributes of employees and departments

« EMP_PROJ mixes attributes of employees and projects and the WORKS_ON

relationship
They may be used as views, but they cause problems when used as base relations

4.3.2 Redundant Information in Tuples and Update Anomalies

One goal of schema design is to minimize the storage space used by the base relations
Grouping attributes into relation schemas has a significant effect on storage space

For example, compare the space used by the two base relations EMPLOYEE and
DEPARTMENT with that for an EMP_DEPT base relation

In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber,

Dname, Dmgr_ssn) are repeated for every employee who works for that department

https:/ivtucode.in Page 4

Database Management System [BCS403]

» In contrast, each department’s information appears only once in the DEPARTMENT
relation. Only the department number Dnumber is repeated in the EMPLOYEE relation

for each employee who works in that department as a foreign key

EMPLOYEE

Fname | Minit | Lname Ssn Bdate Address endef Salary | Super_ssn | Dno
John B | Smith | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX| M |30000 (333445555 | 5
Franklin [T | Wong [333445555 | 1955-12-08 | 638 Voss, Houston, TX M [40000 (888665555 | 5
Alicia J | Zelaya | 999887777 | 1968-01-19 |3321 Castle, Spring, TX | F |25000 |987654321 | 4
Jennifer | S | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX F |43000 (888665555 |« 4
Ramesh | K | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M |38000 (333445585 | .5
Joyce A | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX | F 25000 [3334455585 | &
Ahmad | y |Jabbar | 987987987 |1969-03-29 [980 Dallas, Houston, TX | M (25000 |987654321 | 4
James E |Borg 888665555 | 1937-11-10 | 450 Stone, Houston, TX | M [55000 [NULL 1

Figure 1: One possible database state for the COMPANY relational database schema

DEPT_LOCATIONS

DEPARTMENT Dnumber Dlocation
Dname Dnumber Mgr_ssn Mgr_start_date
Tru 1 Houston

Research 5 333445555 1088-05-22 2
Administration 4 987654321 1995-01-01 Biatied
Headquarters 1 888665555 19810810 9 Bellaire

b Sugarland

5 Houston

https:/ivtucode.in Page 5

Database Management System [BCS403]

WORKS_ON
PROJECT
; Essn Pro Hours |
Pname Pnumber | Plocation Dnum
ProductX 1 Bellaire 5 MR | o | 25
123456780 9 75
ProductY 2 Sugarland 5

ProductZ 3 Houston 5 666884444 a 40.0
Computerization | 10 Staffard 4 453453453 1 20.0
Reorganization 20 Houston i 453453453 2 0.0
Newbenefits a0 Stafford 4 333445555 2 10.0
333445555 3 10.0
DEPENDENT 333445555 10 10.0
Essn Dependent_name |gende Bdate Relationship 993445555 o0 10.0
333445555 Alice F 1986-04-05 | Daughter gUoBR7TTT a0 300
333445555 Theodore M 1983-10-25 | Son 99887777 10 10.0
333445555 Joy F 1958-05-03 | Spouse 987987987 10 a50
987654321 Abner M | 1942-02-28 | Spouse 087037987 30 50
123456789 Michael M 19888-01-04 | Son 987654321 a0 | 200
123456789 Alice F 1988-12-30 | Daughter 087854321 20 150

123456789 Elizabeth F 1967-05-05 | Spouse 088685555 20 NULL

Figure 1 : One possible database state for the COMPANY relational database schema

Redundancy
|
EMP_DEPT | I
Ename Ssn:l._m Bdate Address Dnumber Dname Dmgr_ssn
Smith, John B. 123456789 | 1985-01-09 | 731 Fendren, Houston, TX 5 Research 333445555
Wong, Frankin T. | 333449555 1 1955 12 08 | RuRNcus R 5 | Research 333445555
@aﬁ. Alicia J. 909887777 | 1968-07-19 | 3321 Castle, Spr'l'lg.'l—)(4 Administration | 987654321
V'._"a_all_ace,_]en ni’fer_S. 91_3?654_-:_321 !941-03—2(! 201 I_?_-eny, Bellaire, TX. L ‘”&".’“i’.‘.im"i.‘m 93?354321
Narayan, Ramesh K. | 666884444 11962-09-15 [975 FireOak, Humble, TX B Hesearch 3334455855
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX b Research 333445555
Jabbar, Ahmad V. |9B7087887 | 1869-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. (8BBE65555 | 1937-11-10 | 450 Stons, Houston, TX 1 Headquarters | 888665555
Redundancy Redundancy
| |
EMP_PROJ | I |
sn | Pnumber Hours Ename Pname Plocation
123456789 1 325 Smith, John B. ProductX Bellaire
123456789 2 7.5 Smith, John B. ProductY Sugarland
666084444 3 40.0 Marayan, Ramesh K. | Product? Houston
453453453 i 20.0 English, Joyce A ProductX Bellaire
453453453 2 20.0 English, Joyce A ProductY Sugarand
333445555 2 100 Wong, Franklin T. ProductY Sugarland
333445555 3 100 Waong, Franklin T. ProductZ Houstan
333445555 10 100 Wong, Franklin T. Computerization | Stafford
333445555 20 10.0 Weong, Franklin T. Reorganization Houston
909887777 a0 30.0 Zelaya, Alicia J. Mewbenefits Stafford
909887777 10 10.0 Zelaya, Alicia J. Computenzation | Stafford
987987987 10 35.0 Jabbar, Ahmad V. Computerization | Stafford
587987987 30 5.0 Jabbar, Ahmad V. Newbenefits Stafford
987654321 30 20.0 Wallace, Jennifer 5. | Newbenefits Stafford
287654321 0 15.0 Wallace, Jennifer S. | Reorganization Houston
888665555 20 Null Baorg, James E. Reorganization Houston

Fig: Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations in Figure 1

https:/lvtucode.in Page 6

Database Management System [BCS403]

= Storing natural joins of base relations leads to an additional problem referred to as update
anomalies. These can be classified into:
* insertion anomalies
» deletion anomalies,
* modification anomalies
Insertion Anomalies
= Insertion anomalies can be differentiated into two types, illustrated by the following

examples based on the EMP_DEPT relation:

1. To insert a new employee tuple into EMP_DEPT, we must include either the attribute
values for the department that the employee works for, or NULLs
- For example, to insert a new tuple for an employee who works in department number
5, we must enter all the attribute values of department 5 correctly so that they are
consistent with the corresponding values for department 5 in other tuples in
EMP_DEPT
- In the design of Employee in fig 1, we do not have to worry about this consistency
problem because we enter only the department number in the employee tuple; all
other attribute values of department 5 are recorded only once in the database, as a
single tuple in the DEPARTMENT relation
2. ltis difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place NULL values in the attributes for employee

- This violates the entity integrity for EMP_DEPT because Ssn is its primary key
- This problem does not occur in the design of Figure 1 because a department is
entered in the DEPARTMENT relation whether or not any employees work for it,
and whenever an employee is assigned to that department, a corresponding tuple
is inserted in EMPLOYEE.
Deletion Anomalies

= The problem of deletion anomalies is related to the second insertion anomaly situation
just discussed
- If we delete from EMP_DEPT an employee tuple that happens to represent the
last employee working for a particular department, the information concerning that
department is lost from the database
- This problem does not occur in the database of Figure 2 because DEPARTMENT

tuples are stored separately.

https:/ivtucode.in Page 7

Database Management System [BCS403]

Modification Anomalies
» In EMP_DEPT, if we change the value of one of the attributes of a particular
department—say, the manager of department 5—we must update the tuples of all
employees who work in that department; otherwise, the database will become
inconsistent
= [f we fail to update some tuples, the same department will be shown to have two

different values for manager in different employee tuples, which would be wrong

Guideline 2
= Design the base relation schemas so that no insertion, deletion, or maodification
anomalies are present in the relations
= |f any anomalies are present, note them clearly and make sure that the programs that
update the database will operate correctly
= The second guideline is consistent with and, in a way, a restatement of the first guideline
= These guidelines may sometimes have to be violated in order to improve the
performance of certain queries.
4.3.3 NULL Values in Tuples
* If many of the attributes do not apply to all tuples in the relation, we end up with many
NULLs in those tuples
- this can waste space at the storage level
- may lead to problems with understanding the meaning of the attributes
- may also lead to problems with specifying JOIN operations
- how to account for them when aggregate operations such as COUNT or SUM are
applied
= SELECT and JOIN operations involve comparisons; if NULL values are present, the
results may become unpredictable.
= Moreover, NULLs can have multiple interpretations, such as the following:
* The attribute does not apply to this tuple. For example, Visa_status may not apply

to U.S. students.
* The attribute value for this tuple is unknown. For example, the Date_of birth may

be unknown for an employee.
* The value is known but absent; that is, it has not been recorded yet. For example,

the Home_Phone_Number for an employee may exist, but may not be available

and recorded yet.

Guideline 3

https:/lvtucode.in Page 8

Database Management System [BCS403]

= As far as possible, avoid placing attributes in a base relation whose values may
frequently be NULL

= |f NULLs are unavoidable, make sure that they apply in exceptional cases only and do
not apply to a majority of tuples in the relation

= Using space efficiently and avoiding joins with NULL values are the two overriding
criteria that determine whether to include the columns that may have NULLs in a relation

or to have a separate relation for those columns with the appropriate key columns

= For example, if only 15 percent of employees have individual offices,there is little
justification for including an attribute Office_number in the EMPLOYEE relation; rather,
a relation EMP_OFFICES(Essn, Office_number) can be created to include tuples for

only the employees with individual offices.
4.3.4 Generation of Spurious Tuples

= Consider the two relation schemas EMP_LOCS and EMP_PROJ1 which can be used
instead of the single EMP_PROJ

EMP_LOCS
Ename | Plocation

I
RPK.

EMP_PROM
Ssn | Pnumber Hour5| Pname| Plocation

I
FP.K.

= Atuple in EMP_LOCS means that the employee whose name is Ename works on some
project whose location is Plocation

= A tuple in EMP_PROJ1 refers to the fact that the employee whose Social Security
number is Ssn works Hours per week on the project whose name, number, and location

are Pname, Pnumber, and Plocation.

https:/ivtucode.in Page 9

Database Management System [BCS403]

e

EMP_LOCS EMP_PROH
Ename Plocation Ssn Prnumber | Hours Pname Plocation
Smith, John B. Bellaire 123456789 1 325 ProductX Bellaire
Smith, John B. Sugarland 123456789 2 75 ProductY Sugarland
Narayan, Ramesh K. | Houston 666884444 3 400 ProductZ Houston
English, Joyce A. Bellaire 453453453 1 20.0 ProductX Bellaire
English, Joyce A. Sugarland 453453453 2 20.0 ProductY Sugarland
Wong, Franklin T. Sugarland 3334455655 2 10.0 ProductY Sugariand
Wong, Franklin T. Houston 333445555 a 10.0 ProductZ Houston
Wong, Franklin T. Stafford 333445555 10 10.0 Computerization Stafford
I ie_lgyg,_aijigi-a_j._ " | stafford | 333445555 20 10.0 Reorganization Houston
Jabbar, Ahmad V. | Stafford | oogserrr7 || 30 | 300 | Newbencits | Stafford |
Wallace, Jennifer S. | Stafford 999887777 10 10.0 Computerization | Stafford
Wallace, Jennifer S. | Houston 987087987 10 35.0 Computerization | Stafford
Borg, James E. Houston 987987987 30 5.0 Newbenefits Stafford
987664321 30 20.0 Newbenefits Stafford
987654321 20 15.0 Reorganization Houston
BBBEREERE 20 MNULL Reorganization Houston

= Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of
EMP_PROJ. This produces a particularly bad schema design because we cannot
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and
EMP_LOCS

= |f we attempt a NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result
produces many more tuples than the original set of tuples in EMP_PROJ

= Additional tuples that were not in EMP_PROJ are called spurious tuples because they
represent spurious information that is not valid.

= The spurious tuples are marked by asterisks (*)

Ssn Prumber Hours Prname Plocation Ename
123456789 1 325 | ProductX Bellaire Smith, John B.

*| 123456789 1 325 | ProductX Bellaire English, Joyce A.
123456789 2 75 ProductY Sugarland Smith, John B.

* [123456789 2 75 ProductY Sugarland English, Joyce A.

* | 123456789 2 7.5 PraductY Sugarland Wong, Franklin T.
666884444 3 40.0. | ProductZ Houston MNarayan, Ramesh K.

* | 666884444 3 400 | ProductZ Houston Wong, Franklin T.

™| 453453453 1 20.0 | ProductX Bellaire Smith, John B.
453453453 1 20.0 | ProductX Bellaire English, Joyce A.

* | 463453453 2 20.0 | ProductY Sugarland Smith, John B.
453453453 2 20.0 | ProductY Sugarland English, Joyce A

* | 453453453 2 20.0 | ProductY Sugarland Wong, Franklin T.

* | 3334455655 2 10.0 | ProductY Sugarland Smith, John B.

* | 333445555 2 10.0 | ProductY Sugarland English, Joyce A.
333445555 2 10.0 | ProductY Sugarland Wong, Franklin T.

* | 333445555 3 10.0 | ProductZ Houston Marayan, Ramesh K.
333445555 3 10.0 | ProductZ Houston Wong, Franklin T.
333445555 10 10.0 | Computerization | Stafford Wong, Franklin T.

* [333445555 20 10.0 | Reorganization Houston MNarayan, Ramesh K.

333445595 | 20| 100 [Reorgarization | Houston | Wieng, Frankin . _

= Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because
when we JOIN them back using NATURAL JOIN, we do not get the correct original

information

https:/Ivtucode.in Page 10

Database Management System [BCS403]

This is because in this case Plocation is the attribute that relates EMP_LOCS and
EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either
EMP_LOCS or EMP_PROJ1.

Guideline 4

44

Design relation schemas so that they can be joined with equality conditions on attributes
that are appropriately related (primary key, foreign key) pairs in a way that guarantees
that no spurious tuples are generated

Avoid relations that contain matching attributes that are not (foreign key, primary key)

combinations because joining on such attributes may produce spurious tuples.

Functional Dependencies

= Formal tool for analysis of relational schemas that enables us to detect and describe

some of the problems in precise terms

Definition of Functional Dependency

A functional dependency is a constraint between two sets of attributes from the
database.

Given a relation R, a set of attributes X in R is said to functionally determine another
attribute Y, also in R, (written X — Y) if and only if each X value is associated with at
most one Y value.

X is the determinant set and Y is the dependent attribute. Thus, given a tuple and the
values of the attributes in X, one can determine the corresponding value of the Y
attribute.

The abbreviation for functional dependency is FD or f.d. The set of attributes X is called
the left-hand side of the FD, and Y is called the right-hand side.

A functional dependency is a property of the semantics or meaning of the attributes.

The database designers will use their understanding of the semantics of the attributes of
R to specify the functional dependencies that should hold on all relation states

(extensions) r of R.
Consider the relation schema EMP_PROJ;

EMP_PROJ

SSN | PNUMBER | HOURS ENAME PNAME PLOCATION

From the semantics of the attributes and the relation, we know that the following

functional dependencies should hold:

https:ivtucodedn Ppagel]

Database Management System [BCS403]

a. Ssn—Ename
b. Pnumber —{Pname, Plocation}
c. {Ssn, Pnumber}—Hours
= These functional dependencies specify that
(a) the value of an employee’s Social Security number (Ssn) uniquely
determines the employee name (Ename)
(b) the value of a project's number (Pnumber) uniquely determines
the project name (Pname) and location (Plocation), and
(c) a combination of Ssn and Pnumber values uniquely determines
the number of hours the employee currently works on the
project per week (Hours).
= Alternatively,we say that Ename is functionally determined by (or functionally dependent
on) Ssn, or given a value of Ssn, we know the value of Ename, and so on.
= Relation extensions r(R) that satisfy the functional dependency constraints are called
legal relation states (or legal extensions) of R
= A functional dependency is a property of the relation schema R, not of a particular legal
relation state r of R
= Therefore, an FD cannot be inferred automatically from a given relation extension r but
must be defined explicitly by someone who knows the semantics of the attributes of R
Diagrammatic notation for displaying FDs

* Each FD is displayed as a horizontal line

* The left-hand-side attributes of the FD are connected by vertical lines to the line
representing the FD

« _The right-hand-side attributes are connected by the lines with arrows pointing toward the

attributes.
EMP_PROJ
| Ssn | Pnumber | Hours | Ename | Pname | Plocation
FD1 4
FD2)|
FD3 |
Fig: diagrammatic notation for displaying FDs
Example:
A B % D
al b1 cl dl
al b2 c2 d2
a2 b2 c2 d3
a3 b3 cd d3

https:/Ivtucode.in Page 12

Database Management System [BCS403]

= The following FDs may hold because the four tuples in the current extension have no
violation of these constraints:
*B->C
+C—>B
+{A,Bl—>C
+{A,B}—>D
+ {C, D} —> B.
= The following do not hold because we already have violations of them in the given
extension:
* A — B (tuples 1 and 2 violate this constraint)
* B — A (tuples 2 and 3 violate this constraint)
* D—C (tuples 3 and 4 violate it)

Normal Forms Based on Primary Keys

We assume that a

= Set of functional dependencies is given for each relation

= Each relation has a designated primary key

= This information combined with the tests (conditions) for normal forms drives the
normalization process for relational schema design

= First three normal forms for relation takes into account all candidate keys of a
relation rather than the primary key

4.4.1 Normalization of Relations

= The normalization process, as first proposed by Codd (1972a), takes a relation schema
through a series of tests to certify whether it satisfies a certain normal form.

= |nitially, Codd proposed three normal forms, which he called first, second, and third
normal form

= All these normal forms are based on a single analytical tool: the functional dependencies
among the attributes of a relation

= A fourth normal form (4NF) and a fifth normal form (5NF) were proposed, based on the
concepts of multivalued dependencies and join dependencies, respectively

= Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of

(1) minimizing redundancy and

(2) minimizing the insertion, deletion, and update anomalies

https:livtucodein Ppagel3

Database Management System [BCS403]

» It can be considered as a “filtering” or “purification” process to make the design have
successively better quality
= Unsatisfactory relation schemas that do not meet certain conditions—the normal form
tests—are decomposed into smaller relation schemas that meet the tests and hence
possess the desirable properties.
= Thus, the normalization procedure provides database designers with the following:
+ A formal framework for analyzing relation schemas based on their keys and
on the functional dependencies among their attributes
» A series of normal form tests that can be carried out on individual relation
schemas so that the relational database can be normalized to any desired

degree

= Definition: The normal form of a relation refers to the highest normal form condition that

it meets, and hence indicates the degree to which it has been normalized

4.4.2 Practical Use of Normal Forms

» Normalization is carried out in practice so that the resulting designs are of high quality

and meet the desirable properties

= Database design as practiced in industry today pays particular attention to normalization
only up to 3NF, BCNF, or at most 4NF.

= The database designers need not normalize to the highest possible normal form

= Relations may be left in a lower normalization status, such as 2NF, for performance

reasons

= Definition: Denormalization is the process of storing the join of higher normal form

relations as a base relation, which is in a lower normal form.

4.4.3 Definitions of Keys and Attributes Participating in Keys
= Superkey: specifies a uniqueness constraint that no two distinct tuples in any state r
of R can have the same value
= key K is a superkey with the additional property that removal of any attribute from K will
cause K not to be a superkey any more
= Example:
* The attribute set {Ssn} is a key because no two employees tuples can have the same

value for Ssn

https:/Ivtucode.in Page 14

Database Management System [BCS403]

*Any set of attributes that includes Ssn—for example, {Ssn, Name, Address}—is a
superkey
= |f a relation schema has more than one key, each is called a candidate key
= One of the candidate keys is arbitrarily designated to be the primary key, and the others
are called secondary keys
= |n a practical relational database, each relation schema must have a primary key
= |f no candidate key is known for a relation, the entire relation can be treated as a default
superkey
= For example {Ssn} is the only candidate key for EMPLOYEE, so it is also the primary
key
= Definition. An attribute of relation schema R is called a prime attribute of R if it is a
member of some candidate key of R. An attribute is called nonprime if it is not a prime

attribute—that is, if it is not a member of any candidate key

WORKS_ON
FK FK.

| ssn [Poumber | Hours]
L |

[
PE.

= |n WORKS_ON relation Both Ssn and Pnumber are prime attributes whereas other

attributes are nonprime.

4.4 4 First Normal Form

= Defined to disallow multivalued attributes, composite attributes, and their combinations

It states that the domain of an attribute must include only atomic (simple, indivisible)
values and that the value of any attribute in a tuple must be a single value from the

domain of that attribute

1NF disallows relations within relations or relations as attribute values within tuples

The only attribute values permitted by 1NF are single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure below

(a)
DEPARTMENT
| Dname | Dnumber | Dmgr_ssn | Dlocations |

T | b

= Primary key is Dnumber
= We assume that each department can have a number of locations

https:/ivtucode.in Page 15

Database Management System [BCS403]

= The DEPARTMENT schema and a sample relation state are shown in Figure below

DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocations
Research b 333445555 | (Bellaire, Sugarland, Houston)
Administration 4 087654321 | {Stafford)
Headquarters 1 B88665555 | (Houston}

= As we can see, this is not in 1NF because Dlocations is not an atomic attribute, as
illustrated by the first tuple in Figure
= There are two ways we can look at the Dlocations attribute:

» The domain of Dlocations contains atomic values, but some tuples can have a set of
these values. In this case, Dlocations is not functionally dependent on the primary key
Dnumber

» The domain of Dlocations contains sets of values and hence is nonatomic. In this
case, Dnumber—Dlocations because each set is considered a single member of the
attribute domain

= In either case, the DEPARTMENT relation is notin 1NF

There are three main techniques to achieve first normal form for such a relation:

1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation
DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The
primary key of this relation is the combination {Dnumber, Dlocation}. A distinct tuple
in DEPT_LOCATIONS exists for each location of a department. This decomposes
the non-1NF relation into two 1NF relations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT
relation for each location of a DEPARTMENT. In this case, the primary key
becomes the combination {Dnumber, Dlocation}. This solution has the disadvantage
of introducing redundancy in the relation

DEPARTMENT
Dname Dnumber Dmgr_ssn Dlocation
Research 5 333445555 | Bellaire
Research 5] 333445555 | Sugarland
Research 5 333445555 | Houston
Administration 4 987654321 | Stafford
Headquarters 1 8B8B66b555 | Houston

https:/Ivtucode.in Page 16

Database Management System [BCS403]

3. If a maximum number of values is known for the attribute—for example, if it is
known that at most three locations can exist for a department—replace the
Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and
Dlocation3. This solution has the disadvantage of introducing NULL values if
most departments have fewer than three locations. Querying on this attribute
becomes more difficult; forexample, consider how you would write the query: List
the departments that have ‘Bellaire’ as one of their locations in this design.

= Of the three solutions, the first is generally considered best because it does not suffer
from redundancy and it is completely general, having no limit placed on a maximum
number of values

= First normal form also disallows multivalued attributes that are themselves composite.

= These are called nested relations because each tuple can have a relation within it.

(a)
EMP_PROJ

Projs

| Ssn | Ename | Pnumber |Hours

= Figure above shows how the EMP_PROJ relation could appear if nesting is allowed

= Each tuple represents an employee entity, and a relation PROJS(Pnumber, Hours)
within each tuple represents the employee’s projects and the hours per week that
employee works on each project.

» The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

= Ssn is the primary key of the EMP_PROJ relation and Pnumber is the partial key of the
nested relation; that is, within each tuple, the nested relation must have unique values of
Pnumber

= To normalize this into 1NF, we remove the nested relation attributes into a new relation
and propagate the primary key into it; the primary key of the new relation will combine
the partial key with the primary key of the original relation

= Decomposition and primary key propagation yield the schemas EMP_PROJ1 and

EMP_PROJ2,
EMP_PROJ EMP_PROIJ2
Ssn Prnumber Hours
Ssn Ename — -

https:/lvtucode.in Page 17

Database Management System [BCS403]

EMP_PROJ
San Ename Pnumber Hours
123456789 Smith, Jehn B. 1 325
2 7.5
666884444 | Narayan, RameshK| 3 400
453453453 English, Joyce A. 1 20.0
IS O [- o e
333445555 Wong, Franklin T. 2 10.0
3 10.0
10 10.0
_________________________ 2 (w0
999887777 Zelaya, Alicia J. 30 30.0
_________________________ A0 1100 4P B
987087087 Jabbar, Ahmad V. 10 35.0
30 5.0
087654321 | Wallace, Jennifer S. | ¢ R E 20.0 BN \ESUEN
______________________________ 20 11600
8886655505 Borg, James E. 20 NULL

4.4.5 Second Normal Form

= Second normal form (2NF) is based on the concept of full functional dependency

= A functional dependency X — Y is a full functional dependency if removal of any
attribute A from X means that the dependency does not hold any more; that is, for any
attribute A € X, (X — {A}) does not functionally determine Y

= A functional dependency X—Y is a partial dependency if some attribute A € X can be

removed from X and the dependency still holds; that is, for some A€ X, (X - {A}) - Y

EMP_PROJ
| Ssn | Pnumber | Hours | Ename | Prame | Piocation |

FD1| | A T

FD2|
FD3 |

= In the above figure , {Ssn, Pnumber} — Hours is a full dependency (neither Ssn —
Hours nor Pnumber—Hours holds)

= {Ssn, Pnumber}—Ename is partial because Ssn—Ename holds

» Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully

functionally dependent on the primary key of R

= The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key
= |f the primary key contains a single attribute, the test need not be applied at all

https:/Ilvtucode.in Page 18

Database Management System [BCS403]

= The EMP_PROJ relation is in 1NF but is not in 2NF.

= The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime
attributes Pname and Plocation because of FD3

= The functional dependencies FD2 and FD3 make Ename, Pname, and Plocation
partially dependent on the primary key {Ssn, Pnumber} of EMP_PROQOJ, thus violating the
2NF test.

= |If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a
number of 2NF relations in which nonprime attributes are associated only with the
part of the primary key on which they are fully functionally dependent.

Therefore, the functional dependencies FD1, FD2, and FD3 lead to the decomposition of
EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in Figure below,
each of which is in 2NF.

EMP_PROJ

| Ssn |Pnumber |Hours |Ename |Pname |P!ocaticm
FD1 | *

FDQ| T

FD3 [

2NF Normalization l

EP1 EP2 EP3
| Ssn |Pnumber | Hours | | Ssn |Ena.me | | Pnumber | Pname | Plocation |
FD1 4 FD2 A FD3| A)

4.4.6 Third Normal Form

= Transitive functional dependency
A functional dependency X—Y in a relation schema R is a transitive dependency if
there exists a set of attribute Z that are neither a primary nor a subset of any key of
R(candidate key) and both X > Z and Y = Z holds

= Example:

EMP_DEPT
| Ename | Ssn | Bdate | Address | Dnumber | Dname | Dmgr_ssn |

A |4 A |+ T T

*+ SSN > DMGRSSN is a transitive FD since SSN > DNUMBER and DNUMBER
- DMGRSSN hold

https:/Ivtucode.in Page 19

Database Management System [BCS403]

Dnumber is neither a key itself nor a subset of the key of EMP_DEPT
+ SSN > ENAME is non-transitive since there is no set of attributes X where
SSN = X and X > ENAME
Definition: A relation schema R is in third normal form (3NF) if it is in 2NF and no
non-prime attribute A in R is transitively dependent on the primary key
The relation schema EMP_DEPT is in 2NF, since no partial dependencies on a key
exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of

Dmgr_ssn (and also Dname) on Ssn via Dnumber

EMP_DEPT
‘ Ename ‘ Ssn ‘ Bdate ‘ Address ‘ Dnumber | Dname ‘ Dmgr_ssn |

A I 4 |+ T—__T

We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas
ED1 and ED2

EMP_DEPT
| Ename | Ssn |Bdate | Address | Dnumber |Dname |Dmgr_ssn |

L1+ B NG

3NF Normalization

ED ED2
| Ename |S;sr| |Bdate |Addresa |Dnumber | | Dnumber |Dname | Dmgr_ssn |

4 | 4 A 4 | } 4

ED1 and ED2 represent independent entity facts about employees and departments

A NATURAL JOIN operation on ED1 and ED2 will recover the original relation
EMP_DEPT without generating spurious tuples

Problematic FD
» Left-hand side is part of primary key
+ Left-hand side is a non-key attribute

2NF and 3NF normalization remove these problem FDs by decomposing the original
relation into new relations

In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies because these types of dependencies cause the update

anomalies

https:/Ivtucode.in Page 20

Database Management System [BCS403]

Table 15.1

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

Normal Form

First (1NF)

Second (2NF)

Third (3NF)

Test

Relation should have no multivalued
attributes or nested relations.

For relations where primary key con-
tains multiple attributes, no nonkey
attribute should be functionally
dependent on a part of the primary key.

Relation should not have a nonkey
attribute functionally determined by
another nonkey attribute (or by a set of
nonkey attributes). That is, there should
be no transitive dependency of a non-
key attribute on the primary key.

Remedy (Normalization)

Form new relations for each multivalued
attribute or nested relation.

Decompose and set up a new relation for

each partial key with its dependent attrib-
ute(s). Make sure to keep a relation with
the original primary key and any attributes
that are fully functionally dependent on it.

Decompose and set up a relation that
includes the nonkey attribute(s) that func-

tionally determine(s) other nonkey attrib-

ute(s).

https:/lvtucode.in

Page 21

Database Management System [BCS403]

4.5 General Definition of Second and Third Normal Form

= Takes into account all candidate keys of a relation into account

= Definition of 2NF: A relation schema R is in second normal form (2NF) if every
nonprime attribute A in R is not partially dependent on any key of R

= Consider the relation schema LOTS which describes parcels of land for sale in various
counties of a state

= Suppose that there are two candidate keys: Property_id# and {County name, Lot#}; that
is, lot numbers are unique only within each county, but Property_id# numbers are unique
across counties for the entire state.

Candidate Key

|
LOTS | |

| Property_id# | County_name | Lot# | Area | Price | Tax_rate |

o1 | ! S L
P2} | | ! o

FD3 4

FD4 T

= Based on the two candidate keys Property_id# and {County_name, Lot#}, the functional
dependencies FD1 and FD2 hold
» FD1: Property_id — { County_name,Lot#,Area,Price, Tax_rate}
* FD2:{County_name,Lot#} —{Property_id, Area,Price,Tax_rate}
» FD3: County_name — Tax_rate
» FD4: Area — Price
= We choose Property_id# as the primary key, but no special consideration will be given to
this key over the other candidate key
= FD3 says that the tax rate is fixed for a given county (does not vary lot by lot within the
same county)
= FD4 says that the price of a lot is determined by its area regardless of which county it is
in.
= The LOTS relation schema violates the general definition of 2NF because Tax_rate is
partially dependent on the candidate key {County _name, Lot#}, due to FD3
= To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2

https:/Ilvtucode.in Page 22

Database Management System [BCS403]

LOTS1 LOTS2
| Property_id# | County_name | Lot# | Area | Price | |Couny_name | Tax_rate ‘

il i A B - f
oz | | |+ 1

FD4 T

We construct LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS
and placing it with County_name (the left-hand side of FD3 that causes the partial
dependency) into another relation LOTS2.

= Both LOTS1 and LOTS2 are in 2NF.

= Definition of 3NF: A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X—A holds in R, either (a) X is a superkey of R, or (b)
A is a prime attribute of R

= According to this definition, LOTS2 is in 3NF

= FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime
attribute in LOTS1

= To normalize LOTS1 into 3NF, we decompose it into the relation schemas LOTS1A and

LOTS1B
LOTS1A LOTS1B
| Property_id# | County_name | Lot# | Area |

FD1 | } b4 a4
2 | | | 4

= We construct LOTS1A by removing the attribute Price that violates 3NF from LOTS1 and
placing it with Area (the lefthand side of FD4 that causes the transitive dependency) into
another relation LOTS1B.

= Both LOTS1A and LOTS1B are in 3NF

LOTS 1NF
LOTSH LOTS2 2NF
LOTS1A LOTSIB LOTS2 3NF

Chttpsilvtucodeqn Page23

Database Management System [BCS403]

4.6 Boyce-Codd Normal Form

= Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was
found to be stricter than 3NF

= Every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in
BCNF

= Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X—A holds in R, then X is a superkey of R

= The formal definition of BCNF differs from the definition of 3NF in that condition (b) of
3NF, which allows A to be prime, is absent from BCNF. That makes BCNF a stronger
normal form compared to 3NF

= In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of
LOTS1A

= FD5 satisfies 3NF in LOTS1A because County name is a prime attribute (condition b),
but this condition does not exist in the definition of BCNF

= We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY. This
decomposition loses the functional dependency FD2 because its attributes no longer

coexist in the same relation after decomposition.

LOTS1A
‘ Property_id# ‘ County_name ‘Lot# ‘Area ‘
Fo1 | A ; S
FD2 A | 4

FD5 A |

BCNF Normalization
LOTS1AX LOTS1AY
Property id# | Area |Lot# ‘ ‘ Area | County_name ‘

= |n practice, most relation schemas that are in 3NF are also in BCNF
= Only if X—A holds in a relation schema R with X not being a superkey and A being a
prime attribute will R be in 3NF but not in BCNF

= Example: consider the relation TEACH with the following dependencies:

https:/ivtucode.in Page 24

Database Management System [BCS403]

TEACH

Student Course Instructor
Marayan | Database Mark
Smith Database Navathe
Smith Operating Systems | Ammar
Smith Theory Schulman
Wallace | Database Mark
Wallace | Operating Systems | Ahamad
Waong Database Omiecinski
Zelaya Database MNavathe

MNarayan | Operating Systems | Ammar

FD1: {Student, Course} — Instructor
FD2: Instructor — Course -- means that each instructor teaches one course
= {Student, Course} is a candidate key for this relation
» The dependencies shown follow the pattern in Figure below with Student as A, Course

as B, and Instructor as C

R
A| B |C

FDA1 9
FD2 {

= Hence this relation is in 3NF but not BCNF

= Decomposition of this relation schema into two schemas is not straightforward because

it may be decomposed into one of the three following possible pairs:
1. R1(Student, Instructor) and R2(Student, Course)
2. R1(Course, Instructor) and R2(Course, Student)

3. R1(Instructor, Course)and R2(Instructor, Student)

= |t is generally not sufficient to check separately that each relation schema in the
database is, say, in BCNF or 3NF

= Rather, the process of normalization through decomposition must also confirm the
existence of additional properties that the relational schemas, taken together, should
possess. These would include two properties:

*The nonadditive join or lossless join property, which guarantees that the spurious
tuple generation problem does not occur with respect to the relation schemas
created after decomposition.

* The dependency preservation property, which ensures that each functional

dependency is represented in some individual relation resulting after decomposition.

https:/ivtucode.in Page 25

Database Management System [BCS403]

= We are not able to meet the functional dependency preservation ,but we must meet the
non additive join property
* Nonadditive Join Test for Binary Decomposition:
A decomposition D={R1, R2} of R has the lossless join property with respect to a set
of functional dependencies F on R if and only if either
* The FD ((Ri”Rz2) —=(Rs-Ry)is in F* or
* The FD ((R1"R2) —(Rz-R1)is in F*
= The third decomposition meets the test
R1~R; is Instructor
Ri-R2 is Course
= Hence, the proper decomposition of TEACH into BCNF relations is:
TEACH1(Instructor,Course) and TEACHZ2(Instructor,Student)

= |n general, a relation R not in BCNF can be decomposed so as to meet the nonadditive

join prorperty by the following procedure. It decomposes R successively into set of
relations that are in BCNF:
Let R be the relation notin BCNF, let X R, and let X — A be the FD that
causes violation of BCNF. R may be decomposed into two relations:
R-A
XA
If either R-A or XA is not in BCNF, repeat the process

4.7 Multivalued Dependency and Fourth Normal Form

= For example, consider the relation EMP shown in Figure below:

EMP

!_Ename Pnams 1 Dname]

| Smith X John
Smith Y Anna
Smith X Anna
Smith ¥ John

= A tuple in this EMP relation represents the fact that an employee whose name is
Ename works on the project whose name is Pname and has a dependent whose
name is Dname

= An employee may work on several projects and may have several dependents

= The employee’s projects and dependents are independent of one another

https:/Ivtucode.in Page 26

Database Management System [BCS403]

To keep the relation state consistent, and to avoid any spurious relationship between
the two independent attributes, we must have a separate tuple to represent every
combination of an employee’s dependent and an employee’s project

In the relation state shown in the EMP, the employee Smith works on two projects
‘X’ and Y’ and has two dependents ‘John’ and ‘Anna’ and therefore there are 4
tuples to represent these facts together

The relation EMP is an all-key relation (with key made up of all attributes) and
therefore no f.d’s and as such qualifies to be a BCNF relation

There is a redundancy in the relation EMP-the dependent information is repeated for
every project and project information is repeated for every dependent

To address this situation, the concept of multivalued dependency(MVD) was
proposed and based on this dependency, the fourth normal form was defined
Multivalued dependencies are a consequence of 1NF which disallows an attribute
in a tuple to have a set of values, and the accompanying process of converting an
unnormalized relation into TNF

Informally, whenever two independent 1:N relationships are mixed in the same
relation, R(A, B, C), an MVD may arise

4.7.1 Formal Definition of Multivalued Dependency

Definition. A multivalued dependency X-—>—Y specified on relation schema R, where X and Y

are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples
t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the

following properties where we use Z to denote (R — (X U Y))

t3[X] = t4[X] = t1[X] = t2[X].

= t3[Y] = t1[Y] and t4[Y] = t2[Y].

t3[Z] = t2[Z] and t4]Z] = t1[Z].

EMP
Ename [Pritaric | Dhame Let X= Ename, Y=Pname
Smith X Sk t1[Ename]=t2[ename]=Smith
Smith ¥ Anna Z= (EMP-(Ename u Pname))
Smith X Anna = Dname
Smith Y John

= t3(Ename)=t4(Ename)=t1(Ename)=t2(Ename)=Smith

Database Management System [BCS403]

t3(Pname)=t1(Pname)=X and t4(Pname)=t2(Pname)=Y

t3(Dname)=t2(Dname)=Anna and t4(Dname)=t1(Dname)=John
Whenever X——Y holds, we say that X multidetermines Y. Because of the symmetry in
the definition, whenever X —— Y holds in R, so does X —-— Z. Hence, X —— Y implies
X——Z, and therefore it is sometimes written as X——Y|Z
An MVD X —-— Y in R is called a trivial MVD if

(a) Y is a subset of X, or

EMP_PROJECTS

(b)XUY=R Ename Pname
Smith X
Smith i

= For example, the relation EMP_PROJECTS has the trivial MVD
Ename —— Pname
= An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD
= If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in
the tuples
= In the EMP relation the values ‘X’ and Y’ of Pname are repeated with each value of
Dname (or, by symmetry, the values ‘John’ and ‘Anna’ of Dname are repeated with each
value of Pname)
= This redundancy is clearly undesirable.
= We now present the definition of fourth normal form (4NF), which is violated when a
relation has undesirable multivalued dependencies, and hence can be used to identify
and decompose such relations
= Definition: A relation schema R is in 4NF with respect to a set of dependencies F
(that includes functional dependencies and multivalued dependencies) if, for every
nontrivial multivalued dependency X —— Yin F* X is a superkey for R
» The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF
consists of decomposing it so that each MVD is represented by a separate relation
where it becomes a trivial MVD

EMP_PROJECTS EMP_DEPENDENTS

Ename Pname Ename Dname
Smith X Smith John
Smith Y Smith Anna

https:/ivtucode.in

Page 28

Database Management System [BCS403]

= We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS

= Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs
Ename —— Pname in EMP_PROJECTS and Ename —— Dname in
EMP_DEPENDENTS are trivial MVDs

» No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No
FDs hold in these relation schemas either

= We can state the following points:
* An all-key relation is always in BCNF since it has no FDs
* An all-key relation such as the EMP, which has no FDs but has the MVD Ename——
Pname | Dname, is not in 4NF
» Arelation that is not in 4NF due to a nontrivial MVD must be decomposed to convert it
into a set of relations in 4NF

* The decomposition removes the redundancy caused by the MVD

4.8 Join Dependencies and Fifth Normal Form
» A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation schema

R, specifies a constraint on the states r of R. The constraint states that every legal
state r of R should have a nonadditive join decomposition into R1, R2, ..., Rn. Hence,
for every such r we have

& {ﬂﬂlfr'}, ﬂ:ﬂz[o - ﬂ:f-t_.,“'\” —

= Ajoin dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if

one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Fifth normal form (project-join normal form)

= A relation schema R is in fifth normal form (5NF) (or project-join normal form
(PJNF)) with respect to a set F of functional, multivalued, and join dependencies fif, for
every nontrivial join dependency JD(R1, R2, ..., Rn) in F* every R;is a superkey of R.
= A database is said to be in 5NF, if and only if,
* It'sin 4NF

https:/ivtucode.in Page 29

Database Management System [BCS403]

* If we can decompose table further to eliminate redundancy and anomaly, and when
we re-join the decomposed tables by means of candidate keys, we should not be
losing the original data or any new record set should not arise. In simple words,
joining two or more decomposed table should not lose records nor create new

records.

SUPPLY
Sname Part_name Proj_name
Smith Bolt ProjX
Smith Mut ProjY
Adamsky Bolt ProjY
Walton Mut ProjZ
Adamsky Mail ProjX

| Adamsky | Bolt | Projx |
Smith Bolt ProjY

Fig: The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3)

Ry R, Ry
Sname Part name Sname Proj name Part name Proj name
Smith Bolt Smith PropX Bolt Projx
Smith Mut Smith ProjY Mut ProjY
Adamsky Bolt Adamsky ProjY Bolt ProjY
Walton Mut Walton ProjZ Mut ProjZ
Adamsky Mail Adamsky ProjX Mail Projx

Fig: Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

https:/ivtucode.in Page 30

Database Management System [BCS403]

SQL

4.1 Introduction
SQL was called SEQUEL (Structured English Query Language) and was designed and

implemented at IBM Research.The SQL language may be considered one of the major reasons for
the commercial success of relational databases. SQL is a comprehensive database language. It has
statements for data definitions, queries, and updates. Hence, it is both a DDL and a DML. In
addition, it has facilities for defining views on the database, for specifying security and
authorization, for defining integrity constraints, and for specifying transaction controls. It also has
rules for embedding SQL statements into a general-purpose programming language such as Java,

COBOL, or C/C++.
4.2 SQL Data Definition and Data Types

SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, and
attribute, respectively. The main SQL command for data definition is the CREATE statement, which

can be used to create schemas, tables (relations), domains, views, assertions and triggers.

4.2.1 Schema and Catalog Concepts in SQL

An SQL schema is identified by a schema name, and includes an authorization identifier to
indicate the user or account who owns the schema, as well as descriptors for each element in
the schema. Schema eclements include tables, constraints, views, domains, and other
constructs (such as authorization grants) that describe the schema. A schema is created via
the CREATE SCHEMA statement .

For example, the following statement creates a schema called COMPANY, owned by the
user with authorization identifier ‘Jsmith’..

CREATE SCHEMA COMPANY AUTHORIZATION *‘Jsmith’;

In general, not all users are authorized to create schemas and schema elements. The privilege
to create schemas, tables, and other constructs must be explicitly granted to the relevant user

accounts by the system administrator or DBA.

SQL uses the concept of a catalog—a named collection of schemas in an SQL environment.
A catalog always contains a special schema called INFORMATION SCHEMA, which

provides information on all the schemas in the catalog and all the element descriptors in these

https:/ivtucode.in page 1

Database Management System [BCS403]

schemas. Integrity constraints such as referential integrity can be defined between relations
only if they exist in schemas within the same catalog. Schemas within the same catalog can
also share certain elements, such as domain definitions.

4.2.2 The CREATE TABLE Command in SQL
The CREATE TABLE command is used to specify a new relation by giving it a name and specifying

its attributes and initial constraints. The attributes are specified first, and each attribute is given a
name, a data type to specify its domain of values, and any attribute constraints, such as NOT NULL.
The key, entity integrity, and referential integrity constraints can be specified within the CREATE
TABLE statement after the attributes are declared, or they can be added later using the ALTER
TABLE command.
Typically, the SQL schema in which the relations are declared is implicitly specified in the
environment in which the CREATE TABLE statements are executed. Alternatively, we can
explicitly attach the schema name to the relation name, separated by a period. For example, by
writing

CREATE TABLE COMPANY.EMPLOYEE ...
rather than

CREATE TABLE EMPLOYEE ...
The relations declared through CREATE TABLE statements are called base tables.

Examples:

CREATE TABLE EMPLOYEE

{ Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHARI(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate DATE,
Address VARCHARI(30),
Sex CHAR,
Salary DECIMAL{ 10,2},
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn},
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Dno) REFERENCES DEPARTMENT (Dnumber))

https:/ivtucode.in page 2

Database Management System [BCS403]

CREATE TABLE DEPARTMENT
{ Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(D) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY {Dnumber),

UNIQUE (Dname},

FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) 3
CREATE TABLE DEPT_LOCATIONS

{ Dnumber INT

Dlocation VARCHARI(15)

PRIMARY KEY {Dnumber, Dlocation},

FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) 15
CREATE TABLE PROIJECT

NOT NULL,
NOT NULL,

{ Pname VARCHARI(15) NOT NULL,
Prnumber INT NOT NULL,
Plocation VARCHARI(15),

Dinum INT NOT NULL,

PRIMARY KEY {Pnumber),
UNIQUE (Pname),
FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE WORKS_ON

{ Essn CHAR(9) NOT NULL,
Pno INT NOT NULL,
Hours DECIMAL(3,1] NOT NULL,

PRIMARY KEY (Essn, Pnol,
FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Pno} REFERENCES PROJECT(Pnumber));

CREATE TABLE DEPENDENT
{ Essn CHAR(D) MOT NULL,
Dependent_name VARCHARI(15) NOT NULL,
Sex CHAR,
Bdate DATE,
Relationship VARCHARI8),

PRIMARY KEY (Essn, Dependent_name),
FOREIGM KEY (Essn) REFERENCES EMPLOYEE(Ssn) 13

https:/lvtucode.in

page 3

Database Management System [BCS403]

4.2.3 Attribute Data Types and Domains in SQL

Basic data types
1. Numeric data types includes
* integer numbers of various sizes (INTEGER or INT, and SMALLINT)
* floating-point (real) numbers of various precision (FLOAT or REAL, and
DOUBLE PRECISION).
* Formatted numbers can be declared by using DECIMAL(1,j)—or
DEC(i,j) or NUMERIC(i,j)—where
1 - precision, total number of decimal digits

j - scale, number of digits after the decimal point

2. Character-string data types
+ fixed length—CHAR(n) or CHARACTER(n), where #n is the number of characters
» varying length—VARCHAR(#) or CHAR VARYING(#n) or CHARACTER VARYING(n),
where 7 is the maximum number of characters
* When specifying a literal string value, it is placed between single quotation marks
(apostrophes), and it is case sensitive
* For fixed length strings, a shorter string is padded with blank characters to the right
* For example, if the value ‘Smith’ is for an attribute of type CHAR(10), it is padded with

five blank characters to become ‘Smith ’ if needed

Padded blanks are generally ignored when strings are compared

* Another variable-length string data type called CHARACTER LARGE OBJECT or CLOB
is also available to specify columns that have large text values, such as documents

» The CLOB maximum length can be specified in kilobytes (K), megabytes (M), or gigabytes
(G

* For example, CLOB(20M) specifies a maximum length of 20 megabytes.

3. Bit-string data types are either of
« fixed length n—BIT(n)—or varying length—BIT VARYING(n), where n is the maximum
number of bits.

* The default for n, the length of a character string or bit string, is 1.

https:/Ilvtucode.in page 4

—_—Database Management System (55403

* Literal bit strings are placed between single quotes but preceded by a B to distinguish them
from character strings; for example, B‘10101°
* Another variable-length bitstring data type called BINARY LARGE OBJECT or BLOB is
also available to specify columns that have large binary values, such as images.
* The maximum length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits
(&)
* For example, BLOB(30G) specifies a maximum length of 30 gigabits.
A Boolean data type has the traditional values of TRUE or FALSE.In SQL, because of the
presence of NULL values, a three-valued logic is used, so a third possible value for a Boolean
data type is UNKNOWN
The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in
the form YYYY-MM-DD
The TIME data type has at least eight positions, with the components HOUR, MINUTE,
and SECOND in the form HH:MM:SS.
Only valid dates and times should be allowed by the SQL implementation.
TIME WITH TIME ZONE data type includes an additional six positions for specifying the
displacement from the standard universal time zone, which is in the range +13:00 to —12:59
in units of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the local

time zone for the SQL session.

Additional data types

1.

2.

Timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum
of six positions for decimal fractions of seconds and an optional WITH TIME ZONE
qualifier.

INTERVAL data type. This specifies an interval—a relative value that can be used to
increment or decrement an absolute value of a date, time, or timestamp. Intervals are

qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

It is possible to specify the data type of each attribute directly or a domain can be declared, and the

domain name used with the attribute Specification. This makes it easier to change the data type for a

domain that is used by numerous attributes in a schema, and improves schema readability. For

example, we can create a domain SSN_TYPE by the following statement:

CREATE DOMAIN SSN _TYPE AS CHAR(9);

https:/Ilvtucode.in page 5

Database Management System [BCS403]

We can use SSN_TYPE in place of CHAR(9) for the attributes Ssn and Super ssn of EMPLOYEE,
Mgr ssn of DEPARTMENT, Essn of WORKS ON, and Essn of DEPENDENT

4.3 Specifying Constraints in SQL

Basic constraints that can be specified in SQL as part of table creation:

* key and referential integrity constraints
* Restrictions on attribute domains and NULLs

* constraints on individual tuples within a relation

4.3.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLSs as attribute values, a constraint NOT NULL may be specified if NULL
is not permitted for a particular attribute. This is always implicitly specified for the attributes that are
part of the primary key of each relation, but it can be specified for any other attributes whose values
are required not to be NULL.

It is also possible to define a default value for an attribute by appending the clause DEFAULT
<value> to an attribute definition. The default value is included in any new tuple if an explicit value
is not provided for that attribute.

CREATE TABLE DEPARTMENT

(...,
Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555,

Another type of constraint can restrict attribute or domain values using the CHECK clause following
an attribute or domain definition . For example, suppose that department numbers are restricted to
integer numbers between 1 and 20; then, we can change the attribute declaration of Dnumber in the
DEPARTMENT table to the following:

Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN statement.For
example, we can write the following statement:

CREATE DOMAIN D NUM AS INTEGER

https:/Ivtucode.in page 6

- Database Management System [BCS403]

CHECK (D NUM >0 AND D NUM <21);

We can then use the created domain D NUM as the attribute type for all attributes that refer to
department number such as Dnumber of DEPARTMENT, Dnum of PROJECT, Dno of
EMPLOYEE, and so on.

4.3.2 Specifying Key and Referential Integrity Constraints

The PRIMARY KEY clause specifies one or more attributes that make up the primary key of a
relation. If a primary key has a single attribute, the clause can follow the attribute directly. For
example, the primary key of DEPARTMENT can be specified as:

Dnumber INT PRIMARY KEY;

The UNIQUE clause can also be specified directly for a secondary key if the secondary key is a
single attribute, as in the following example:

Dname VARCHAR(15) UNIQUE;
Referential integrity is specified via the FOREIGN KEY clause

FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),

FOREIGN KEY (Dno) REFERENCES DEPARTMENT (Dnumber
A referential integrity constraint can be violated when tuples are inserted or deleted, or when a
foreign key or primary key attribute value is modified. The default action that SQL takes for an
integrity violation is to reject the update operation that will cause a violation, which is known as

the RESTRICT option.

The schema designer can specify an alternative action to be taken by attaching a referential
triggered action clause to any foreign key constraint. The options include SET NULL,
CASCADE, and SET DEFAULT. An option must be qualified with either ON DELETE or ON
UPDATE

= FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber) ON DELETE SET
DEFAULT ON UPDATE CASCADE

= FOREIGN KEY (Super ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET
NULL ON UPDATE CASCADE

* FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) ON DELETE
CASCADE ON UPDATE CASCADE

https:/ivtucode.in page 7

Database Management System [BCS403]

In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for
both ON DELETE and ON UPDATE: The value of the affected referencing attributes is changed
to NULL for SET NULL and to the specified default value of the referencing attribute for SET
DEFAULT.
The action for CASCADE ON DELETE is to delete all the referencing tuples whereas the action
for CASCADE ON UPDATE is to change the value of the referencing foreign key attribute(s) to the
updated (new) primary key value for all the referencing tuples . It is the responsibility of the
database designer to choose the appropriate action and to specify it in the database schema. As a
general rule, the CASCADE option is suitable for “relationship” relations such as WORKS ON; for
relations that represent multivalued attributes, such as DEPT LOCATIONS; and for relations that
represent weak entity types, such as DEPENDENT.

4.3.3 Giving Names to Constraints

The names of all constraints within a particular schema must be unique. A constraint name is used
to identify a particular constraint in case the constraint must be dropped later and replaced with
another constraint.

4.3.4 Specifying Constraints on Tuples Using CHECK

In addition to key and referential integrity constraints, which are specified by special keywords,
other table constraints can be specified through additional CHECK clauses at the end of a
CREATE TABLE statement. These can be called tuple-based constraints because they apply to

each tuple individually and are checked whenever a tuple is inserted or modified

For example, suppose that the DEPARTMENT table had an additional attribute Dept_create date,
which stores the date when the department was created. Then we could add the following CHECK
clause at the end of the CREATE TABLE statement for the DEPARTMENT table to make sure
that a manager’s start date is later than the department creation date

CHECK (Dept_create_date <= Mgr_start date);

4.4 Basic Retrieval Queries in SQL
SQL has one basic statement for retrieving information from a database: the SELECT statement.
4.4.1 The SELECT-FROM-WHERE Structure of Basic SQL Queries

The basic form of the SELECT statement, sometimes called a mapping or a select-from-where

block, is formed of the three clauses SELECT, FROM, and WHERE and has the following form:

‘https:livtucodeqin . page8

Database Management System [BCS403]

SELECT <attribute list>

FROM <table list>

WHERE <condition>;
Where,

= <attribute list> is a list of attribute names whose values are to be retrieved by the

query
= <table list> is a list of the relation names required to process the query

= <condition> is a conditional (Boolean) expression that identifies the tuples to be
retrieved by the query.

Examples:
1. Retrieve the birth date and address of the employee(s) whose name is ‘John B.

Smith’.
SELECT Bdate, Address
FROM EMPLOYEE
WHERE Fname=‘John’” AND Minit="B’ AND Lname="Smith’;

The SELECT clause of SQL specifies the attributes whose values are to be retrieved, which
are called the projection attributes. The WHERE clause specifies the Boolean condition that
must be true for any retrieved tuple, which is known as the selection condition.
2. Retrieve the name and address of all employees who work for the ‘Research’ department.
SELECT Fname, Lname, Address
FROM EMPLOYEE, DEPARTMENT
WHERE Dname=‘Research” AND Dnumber=Dno;

In the WHERE clause, the condition Dname = ‘Research’ is a selection condition that
chooses the particular tuple of interest in the DEPARTMENT table, because Dname is an
attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,
because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,
whenever the value of Dnumber in DEPARTMENT is equal to thevalue of Dno in
EMPLOYEE.A query that involves only selection and join conditions plus projection
attributes is known as a select-project-join query.
3. For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, address, and birth date.

https:/Ivtucode.in page 9

Database Management System [BCS403]

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr ssn=Ssn AND Plocation=*Stafford’;
The join condition Dnum = Dnumber relates a project tuple to its controlling department tuple,
whereas the join condition Mgr ssn = Ssn relates the controlling department tuple to the
employee tuple who manages that department. Each tuple in the result will be a combination of
one project, one department, and one employee that satisfies the join conditions. The projection

attributes are used to choose the attributes to be displayed from each combined tuple.

4.4.2 Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables
In SQL, the same name can be used for two or more attributes as long as the attributes are in
different relations. If this is the case, and a multitable query refers to two or more attributes with
the same name, we must qualify the attribute name with the relation name to prevent ambiguity.
This is done by prefixing the relation name to the attribute name and separating the two by a
period.
Example: Retrieve the name and address of all employees who work for the ‘Research’
department
SELECT Fname, EMPLOYEE.Name, Address
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.Name=‘Research® AND
DEPARTMENT .Dnumber=EMPLOYEE.Dnumber;
The ambiguity of attribute names also arises in the case of queries that refer to the same relation
twice. For example consider the query: For each employee, retrieve the employee’s first and last
name and the first and last name of his or her immediate supervisor.
SELECT E.Fname, E.Lname, S.Fname, S.Lname
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn=S.Ssn;
In this case, we are required to declare alternative relation names E and S, called aliases or tuple
variables, for the EMPLOYEE relation. An alias can follow the keyword AS, or it can directly
follow the relation name—for example, by writing EMPLOYEE E, EMPLOYEE S. It is also
possible to rename the relation attributes within the query in SQL by giving them aliases. For
example, if we write

EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

https:ivtucodein pagel0

Database Management System [BCS403]

m the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so on
4.4.3 Unspecified WHERE Clause and Use of the Asterisk

A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the relation
specified in the FROM clause qualify and are selected for the query result.If more than one relation
is specified in the FROM clause and there is no WHERE clause, then the CROSS PRODUCT—all
possible tuple combinations—of these relations is selected.
Example: Select all EMPLOYEE Ssns and all combinations of EMPLOYEE Ssn and
DEPARTMENT Dname in the database.

SELECT Ssn

FROM EMPLOYEE;

SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names
explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes. For example, the
following query retrieves all the attribute values of any EMPLOYEE who works in DEPARTMENT
number 5

SELECT * FROM EMPLOYEE WHERE Dno=5;

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE Dname=*‘Research’
AND Dno=Dnumber;

SELECT * FROM EMPLOYEE, DEPARTMENT;

4.4.4 Tables as Sets in SQL
SQL usually treats a table not as a set but rather as a multiset; duplicate tuples can appear more than
once in a table, and in the result of a query. SQL does not automatically eliminate duplicate tuples in
the results of queries, for the following reasons:
= Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples
first and then eliminate duplicates.
= The user may want to see duplicate tuples in the result of a query.
= When an aggregate function is applied to tuples, in most cases we do not want to eliminate
duplicates.
If we do want to eliminate duplicate tuples from the result of an SQL query, we use the keyword

DISTINCT in the SELECT clause, meaning that only distinct tuples should remain in the result.

https:/ivtucode.in page 11

Database Management System [BCS403]

Example : Retrieve the salary of every employee and all distinct salary values
(a) SELECT ALL Salary FROM EMPLOYEE;
(b) SELECT DISTINCT Salary FROM EMPLOYEE;

(a) (b)
Salary Sa]ary
30000 30000
40000 40000
25000 25000
SR 43000
38000 38000
25000 55000
25000
55000

SQL has directly incorporated some of the set operations from mathematical set theory, which are
also part of relational algebra. There are
= set union (UNION)
= set difference (EXCEPT) and
= set intersection (INTERSECT)
The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are
eliminated from the result. These set operations apply only to union-compatible relations, so we must
make sure that the two relations on which we apply the operation have the same attributes and that
the attributes appear in the same order in both relations.
Example: Make a list of all project numbers for projects that involve an employee whose last name
is “Smith’, either as a worker or as a manager of the department that controls the project
(SELECT DISTINCT Pnumber FROM PROJECT, DEPARTMENT,
EMPLOYEE WHERE Dnum=Dnumber AND Mgr ssn=Ssn AND Lname=‘Smith’)
UNION
(SELECT DISTINCT Pnumber FROM PROJECT, WORKS ON, EMPLOYEE
WHERE Pnumber=Pno AND Essn=Ssn AND Lname=‘Smith’);

https:/Ilvtucode.in page 12

Database Management System [BCS403]

4.4.5 Substring Pattern Matching and Arithmetic Operators
Several more features of SQL
The first feature allows comparison conditions on only parts of a character string, using the LIKE
comparison operator. This can be used for string pattern matching. Partial strings are specified
using two reserved characters:
= 9% replaces an arbitrary number of zero or more characters
= (underscore) replaces a single character
For example, consider the following query: Retrieve all employees whose address is in Houston,
Texas
SELECT Fname, Lname FROM EMPLOYEE WHERE Address
LIKE ‘%Houston, TX%’;
To retrieve all employees who were born during the 1950s, we can use Query
SELECT Fname, Lname FROM EMPLOYEE
WHERE Bdate LIKE* 5 "
If an underscore or % is needed as a literal character in the string, the character should be preceded
by an escape character, which is specified after the string using the keyword ESCAPE. For example,
‘AB\ CD\%EF’ ESCAPE °\" represents the literal string ‘AB_CD%EF’ because \ is specified as the
escape character.Also, we need a rule to specify apostrophes or single quotation marks (* *) if they
are to be included in a string because they are used to begin and end strings. If an apostrophe (°) is
needed, it is represented as two consecutive apostrophes () so that it will not be interpreted as
ending the string.
Another feature allows the use of arithmetic in queries.The standard arithmetic operators for addition
(+), subtraction (—), multiplication (*), and division (/) can be applied to numeric values or attributes
with numeric domains. For example,suppose that we want to see the effect of giving all employees
who work on the ‘ProductX’ project a 10 percent raise; we can issue the following query:
SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased sal
FROM EMPLOYEE AS E, WORKS ON AS W, PROJECT AS P
WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND P.Pname=‘ProductX’;
Example: Retrieve all employees in department 5 whose salary is between $30,000 and $40,000.
SELECT * FROM EMPLOYEE WHERE (Salary BETWEEN 30000 AND
40000) AND Dno = 5;
The condition (Salary BETWEEN 30000 AND 40000) is equivalent to the condition((Salary >=
30000) AND (Salary <= 40000)).

https:/Iivtucode.in page 13

- Databasc Management System [BCS403]

4.4.6 Ordering of Query Results
SQL allows the user to order the tuples in the result of a query by the values of one or more of the
attributes that appear in the query result, by using the ORDER BY clause.
Example:Retrieve a list of employees and the projects they are working on, ordered by department
and, within each department, ordered alphabetically bylast name, then first name.

SELECT D.Dname, E.Lname, E.Fname, P.Pname

FROM DEPARTMENT D, EMPLOYEE E, WORKS ON W, PROJECT P

WHERE D.Dnumber= E.Dno AND E.Ssn= W.Essn AND W.Pno= P.Pnumber

ORDER BY D.Dname, E.Lname, E.Fname;
The default order is in ascending order of values.We can specify the keyword DESC if we want to
see the result in a descending order of values. The keyword ASC can be used to specify ascending
order explicitly. For example, if we want descending alphabetical order on Dname and ascending
order on Lname, Fname, the ORDER BY clause can be written as

ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

4.5 INSERT, DELETE, and UPDATE Statements in SQL

4.5.1The INSERT Command

INSERT is used to add a single tuple to a relation. We must specify the relation name and a list of

values for the tuple. The values should be listed in the same order in which the corresponding

attributes were specified in the CREATE TABLE command.

Example: INSERT INTO EMPLOYEE VALUES (‘Richard’, ‘K’, ‘Marini’, ‘653298653°, *1962-
12-30", °98 Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653", 4);

INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

VALUES (‘Richard’, ‘Marini’, 4, ©653298653");
A second form of the INSERT statement allows the user to specify explicit attribute names that
correspond to the values provided in the INSERT command. The values must include all attributes
with NOT NULL specification and no default value. Attributes with NULL allowed or DEFAULT
values are the ones that can be left out.
A variation of the INSERT command inserts multiple tuples into a relation in conjunction with
creating the relation and loading it with the result of a query. For example, to create a temporary
table that has the employee last name, project name, and hours per week for each employee working

on a project, we can write the statements in U3A and U3B:

https:/Ilvtucode.in page 14

Database Management System [BCS403]

U3A: CREATE TABLE WORKS ON_INFO(
Emp name VARCHAR(15),
Proj name VARCHAR(15),
Hours per week DECIMAL(3,1));
U3B: INSERT INTO WORKS ON_INFO
(Emp_name, Proj name,Hours per week)
SELECT E.Lname, P.Pname, W.Hours
FROM PROJECT P, WORKS ON W, EMPLOYEE E
WHERE P.Pnumber=W.Pno AND W Essn=E.Ssn;
A table WORKS ON _INFO is created by U3A and is loaded with the joined information retrieved
from the database by the query in U3B. We can now query WORKS ON INFO as we would any
other relation;
4.5.2 The DELETE Command
The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that
used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one
table at a time. The deletion may propagate to tuples in other relations if referential triggered actions
are specified in the referential integrity constraints of the DDL.
Example:
DELETE FROM EMPLOYEE WHERE Lname=‘Brown’;
Depending on the number of tuples selected by the condition in the WHERE clause, zero, one, or
several tuples can be deleted by a single DELETE command. A missing WHERE clause specifies
that all tuples in the relation are to be deleted; however, the table remains in the database as an empty
table.
4.5.3 The UPDATE Command
The UPDATE command is used to modify attribute values of one or more selected Tuples.An
additional SET clause in the UPDATE command specifies the attributes to be modified and their
new values. For example, to change the location and controlling department number of project

number 10 to ‘Bellaire’ and 5, respectively, we use
UPDATE PROJECT SET Plocation = ‘Bellaire’, Dnum = 5 WHERE Pnumber=10;

As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples to be
modified from a single relation. However, updating a primary key value may propagate to the
foreign key values of tuples in other relations if such a referential triggered action is specified in the

referential integrity constraints of the DDL.

https:/Ivtucode.in page 15

Database Management System [BCS403]

Several tuples can be modified with a single UPDATE command. An example is to give all
employees in the ‘Research’ department a 10 percent raise in salary, as shown by the following
query

UPDATE EMPLOYEE

SET Salary = Salary * 1.1

WHERE Dno = 5;
Each UPDATE command explicitly refers to a single relation only. To modify multiple relations, we

must issue several UPDATE commands.

4.6 Additional Features of SQL

= SQL has various techniques for specifying complex retrieval queries, including nested queries,
aggregate functions, grouping, joined tables, outer joins, and recursive queries; SQL views,
triggers, and assertions; and commands for schema modification.

= SQL has various techniques for writing programs in various programming languages that include
SQL statements to access one or more databases.

= SQL has transaction control commands. These are used to specify units of database processing
for concurrency control and recovery purposes.

= SQL has language constructs for specifying the granting and revoking of privileges to users.

= SQL has language constructs for creating triggers. These are generally referred to as active
database techniques, since they specify actions that are automatically triggered by events such as
database updates.

= SQL has incorporated many features from object-oriented models to have more powerful
capabilities, leading to enhanced relational systems known as object-relational.

= SQL and relational databases can interact with new technologies such as XML

https:/ivtucode.in page 16

