

Database Normalization is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion Anomalies.
It is a multi-step process that puts data into tabular form by removing duplicated data from
the relation tables. This module discuss the basic and higher normal forms.

4.1 Objectives

 To study the process of normalization and refine the database design
 To normalize the tables upto 4NF and 5NF
 To study lossless and lossy join operations
 To study inference rules
 To study other dependencies and Normal Forms.

4.2 Introduction to DB design

Each relation schema consists of a number of attributes, and the relational database schema

consists of a number of relation schemas. So far, we have assumed that attributes are grouped

to form a relation schema by using the common sense of the database designer or by mapping

a database schema design from a conceptual data model such as the ER or Enhanced-ER

(EER) data model. These models make the designer identify entity types and relationship types

and their respective attributes, which leads to a natural and logical grouping of the attributes into

relations.

Database Design There are two levels at which we
can discuss the goodness of relation schemas:

1. The logical (or conceptual) level how users interpret the relation schemas and the

meaning of their attributes.

2. The implementation (or physical storage) level how the tuples in a base relation are

stored and updated. This level applies only to schemas of base relations

An Example

 STUDENT relation with attributes: studName, rollNo, gender, studDept

 DEPARTMENT relation with attributes: deptName, officePhone, hod

 Several students belong to a department

Correct schema:

Student Department

[BCS403]

Module-3 Database Design Theory

Incorrect schema:

Studdept

Problems with bad schema

 Redundant storage of data:

 - Office Phone & HOD info -stored redundantly once with each student that

 belongs to the department

 - wastage of disk space

 A program that updates Office Phone of a department

 - must change it at several places

 - more running time

 - error -prone

4.3 Informal Design Guidelines for Relation Schemas

 Four informal guidelines that may be used as measures to determine the quality of

 relation schema design:

1. Making sure that the semantics of the attributes is clear in the schema

2. Reducing the redundant information in tuples

3. Reducing the NULL values in tuples

4. Disallowing the possibility of generating spurious tuples

 These measures are not always independent of one another

4.3.1 Imparting Clear Semantics to Attributes in Relations

 semantics of a relation refers to its meaning resulting from the interpretation of attribute

values in a tuple

 Whenever we group attributes to form a relation schema, we assume that attributes

belonging to one relation have certain real-world meaning and a proper interpretation

associated with them

 The easier it is to explain the semantics of the relation, the better the relation schema

design will be

Guideline 1

 Design a relation schema so that it is easy to explain its meaning

 Do not combine attributes from multiple entity types and relationship types into a single

relation

https://vtucode.in

[BCS403]

 if a relation schema corresponds to one entity type or one relationship type, it is

 straightforward to interpret and to explain its meaning

 if the relation corresponds to a mixture of multiple entities and relationships,

 semantic ambiguities will result and the relation cannot be easily explained.

 Examples of Violating Guideline 1

Fig: schema diagram for company database

 Both the relation schemas have clear semantics

 A tuple in the EMP_DEPT relation schema represents a single employee but includes

additional information the name (Dname) of the department for which the employee

works and the Social Security number (Dmgr_ssn) of the department manager.

 A tuple in the EMP_PROJ relates an employee to a project but also includes the

employee name (Ename), project name (Pname), and project location (Plocation)

 logically correct but they violate Guideline 1 by mixing attributes from distinct real-world

entities:

 EMP_DEPT mixes attributes of employees and departments

 EMP_PROJ mixes attributes of employees and projects and the WORKS_ON

 relationship

 They may be used as views, but they cause problems when used as base relations

4.3.2 Redundant Information in Tuples and Update Anomalies

 One goal of schema design is to minimize the storage space used by the base relations

 Grouping attributes into relation schemas has a significant effect on storage space

 For example, compare the space used by the two base relations EMPLOYEE and

DEPARTMENT with that for an EMP_DEPT base relation

 In EMP_DEPT, the attribute values pertaining to a particular department (Dnumber,

Dname, Dmgr_ssn) are repeated for every employee who works for that department

https://vtucode.in

[BCS403]

relation. Only the department number Dnumber is repeated in the EMPLOYEE relation

for each employee who works in that department as a foreign key

Figure 1: One possible database state for the COMPANY relational database schema

https://vtucode.in

[BCS403]

Figure 1 : One possible database state for the COMPANY relational database schema

Fig: Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relations in Figure 1

https://vtucode.in

[BCS403]

 Storing natural joins of base relations leads to an additional problem referred to as update

anomalies. These can be classified into:

 insertion anomalies

 deletion anomalies,

 modification anomalies

Insertion Anomalies

 Insertion anomalies can be differentiated into two types, illustrated by the following

examples based on the EMP_DEPT relation:

1. To insert a new employee tuple into EMP_DEPT, we must include either the attribute

values for the department that the employee works for, or NULLs

- For example, to insert a new tuple for an employee who works in department number

5, we must enter all the attribute values of department 5 correctly so that they are

consistent with the corresponding values for department 5 in other tuples in

EMP_DEPT

- In the design of Employee in fig 1, we do not have to worry about this consistency

problem because we enter only the department number in the employee tuple; all

other attribute values of department 5 are recorded only once in the database, as a

single tuple in the DEPARTMENT relation

2. It is difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place NULL values in the attributes for employee

 - This violates the entity integrity for EMP_DEPT because Ssn is its primary key

 - This problem does not occur in the design of Figure 1 because a department is

 entered in the DEPARTMENT relation whether or not any employees work for it,

 and whenever an employee is assigned to that department, a corresponding tuple

 is inserted in EMPLOYEE.

Deletion Anomalies

 The problem of deletion anomalies is related to the second insertion anomaly situation

just discussed

 - If we delete from EMP_DEPT an employee tuple that happens to represent the

 last employee working for a particular department, the information concerning that

 department is lost from the database

- This problem does not occur in the database of Figure 2 because DEPARTMENT

 tuples are stored separately.

https://vtucode.in

[BCS403]

Modification Anomalies

 In EMP_DEPT, if we change the value of one of the attributes of a particular

department say, the manager of department 5 we must update the tuples of all

employees who work in that department; otherwise, the database will become

inconsistent

 If we fail to update some tuples, the same department will be shown to have two

different values for manager in different employee tuples, which would be wrong

Guideline 2

 Design the base relation schemas so that no insertion, deletion, or modification

anomalies are present in the relations

 If any anomalies are present, note them clearly and make sure that the programs that

update the database will operate correctly

 The second guideline is consistent with and, in a way, a restatement of the first guideline

 These guidelines may sometimes have to be violated in order to improve the

performance of certain queries.

4.3.3 NULL Values in Tuples

 If many of the attributes do not apply to all tuples in the relation, we end up with many

NULLs in those tuples

 - this can waste space at the storage level

 - may lead to problems with understanding the meaning of the attributes

 - may also lead to problems with specifying JOIN operations

 - how to account for them when aggregate operations such as COUNT or SUM are

 applied

 SELECT and JOIN operations involve comparisons; if NULL values are present, the

results may become unpredictable.

 Moreover, NULLs can have multiple interpretations, such as the following:

 The attribute does not apply to this tuple. For example, Visa_status may not apply

 to U.S. students.

 The attribute value for this tuple is unknown. For example, the Date_of_birth may

 be unknown for an employee.

 The value is known but absent; that is, it has not been recorded yet. For example,

 the Home_Phone_Number for an employee may exist, but may not be available

 and recorded yet.

Guideline 3

https://vtucode.in

[BCS403]

 As far as possible, avoid placing attributes in a base relation whose values may

frequently be NULL

 If NULLs are unavoidable, make sure that they apply in exceptional cases only and do

not apply to a majority of tuples in the relation

 Using space efficiently and avoiding joins with NULL values are the two overriding

criteria that determine whether to include the columns that may have NULLs in a relation

or to have a separate relation for those columns with the appropriate key columns

 For example, if only 15 percent of employees have individual offices,there is little

justification for including an attribute Office_number in the EMPLOYEE relation; rather,

a relation EMP_OFFICES(Essn, Office_number) can be created to include tuples for

only the employees with individual offices.

4.3.4 Generation of Spurious Tuples

 Consider the two relation schemas EMP_LOCS and EMP_PROJ1 which can be used

instead of the single EMP_PROJ

 A tuple in EMP_LOCS means that the employee whose name is Ename works on some
project whose location is Plocation

 A tuple in EMP_PROJ1 refers to the fact that the employee whose Social Security

number is Ssn works Hours per week on the project whose name, number, and location

are Pname, Pnumber, and Plocation.

https://vtucode.in

[BCS403]

 Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of
EMP_PROJ. This produces a particularly bad schema design because we cannot
recover the information that was originally in EMP_PROJ from EMP_PROJ1 and
EMP_LOCS

 If we attempt a NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result

produces many more tuples than the original set of tuples in EMP_PROJ

 Additional tuples that were not in EMP_PROJ are called spurious tuples because they

represent spurious information that is not valid.

 The spurious tuples are marked by asterisks (*)

 Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because

when we JOIN them back using NATURAL JOIN, we do not get the correct original

information

https://vtucode.in

[BCS403]

 This is because in this case Plocation is the attribute that relates EMP_LOCS and

EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either

EMP_LOCS or EMP_PROJ1.

 Guideline 4

 Design relation schemas so that they can be joined with equality conditions on attributes

that are appropriately related (primary key, foreign key) pairs in a way that guarantees

that no spurious tuples are generated

 Avoid relations that contain matching attributes that are not (foreign key, primary key)

combinations because joining on such attributes may produce spurious tuples.

4.4 Functional Dependencies

 Formal tool for analysis of relational schemas that enables us to detect and describe

 some of the problems in precise terms

Definition of Functional Dependency

 A functional dependency is a constraint between two sets of attributes from the

database.

 Given a relation R, a set of attributes X in R is said to functionally determine another

attribute Y, also in R, (written X Y) if and only if each X value is associated with at

most one Y value.

 X is the determinant set and Y is the dependent attribute. Thus, given a tuple and the

values of the attributes in X, one can determine the corresponding value of the Y

attribute.

 The abbreviation for functional dependency is FD or f.d. The set of attributes X is called

the left-hand side of the FD, and Y is called the right-hand side.

 A functional dependency is a property of the semantics or meaning of the attributes.

 The database designers will use their understanding of the semantics of the attributes of

R to specify the functional dependencies that should hold on all relation states

(extensions) r of R.

 Consider the relation schema EMP_PROJ;

 From the semantics of the attributes and the relation, we know that the following

functional dependencies should hold:

https://vtucode.in

[BCS403]

 Plocation}

 These functional dependencies specify that

 determines the employee name (Ename)

 uniquely determines

 the project name (Pname) and location (Plocation), and

 (c) a combination of Ssn and Pnumber values uniquely determines

 the number of hours the employee currently works on the

 project per week (Hours).

 Alternatively,we say that Ename is functionally determined by (or functionally dependent

on) Ssn, or given a value of Ssn, we know the value of Ename, and so on.

 Relation extensions r(R) that satisfy the functional dependency constraints are called

legal relation states (or legal extensions) of R

 A functional dependency is a property of the relation schema R, not of a particular legal

relation state r of R

 Therefore, an FD cannot be inferred automatically from a given relation extension r but

must be defined explicitly by someone who knows the semantics of the attributes of R

Diagrammatic notation for displaying FDs

 Each FD is displayed as a horizontal line
 The left-hand-side attributes of the FD are connected by vertical lines to the line

representing the FD
 The right-hand-side attributes are connected by the lines with arrows pointing toward the

attributes.

 Fig: diagrammatic notation for displaying FDs

Example:

https://vtucode.in

[BCS403]

 The following FDs may hold because the four tuples in the current extension have no

violation of these constraints:

 B C

 C B

 {A, B C

 {A, B D

 {C, D B.

 The following do not hold because we already have violations of them in the given

extension:

 A B (tuples 1 and 2 violate this constraint)

 B A (tuples 2 and 3 violate this constraint)

 D C (tuples 3 and 4 violate it)

Normal Forms Based on Primary Keys

 We assume that a

 Set of functional dependencies is given for each relation

 Each relation has a designated primary key

 This information combined with the tests (conditions) for normal forms drives the

 normalization process for relational schema design

 First three normal forms for relation takes into account all candidate keys of a
 relation rather than the primary key

 4.4.1 Normalization of Relations

 The normalization process, as first proposed by Codd (1972a), takes a relation schema

through a series of tests to certify whether it satisfies a certain normal form.

 Initially, Codd proposed three normal forms, which he called first, second, and third

normal form

 All these normal forms are based on a single analytical tool: the functional dependencies

among the attributes of a relation

 A fourth normal form (4NF) and a fifth normal form (5NF) were proposed, based on the

concepts of multivalued dependencies and join dependencies, respectively

 Normalization of data can be considered a process of analyzing the given relation

schemas based on their FDs and primary keys to achieve the desirable properties of

 (1) minimizing redundancy and

 (2) minimizing the insertion, deletion, and update anomalies

https://vtucode.in

[BCS403]

 design have

successively better quality

 Unsatisfactory relation schemas that do not meet certain conditions the normal form

tests are decomposed into smaller relation schemas that meet the tests and hence

possess the desirable properties.

 Thus, the normalization procedure provides database designers with the following:

 A formal framework for analyzing relation schemas based on their keys and

 on the functional dependencies among their attributes

 A series of normal form tests that can be carried out on individual relation

schemas so that the relational database can be normalized to any desired

degree

 Definition: The normal form of a relation refers to the highest normal form condition that

it meets, and hence indicates the degree to which it has been normalized

4.4.2 Practical Use of Normal Forms

 Normalization is carried out in practice so that the resulting designs are of high quality

and meet the desirable properties

 Database design as practiced in industry today pays particular attention to normalization

only up to 3NF, BCNF, or at most 4NF.

 The database designers need not normalize to the highest possible normal form

 Relations may be left in a lower normalization status, such as 2NF, for performance

reasons

 Definition: Denormalization is the process of storing the join of higher normal form

relations as a base relation, which is in a lower normal form.

4.4.3 Definitions of Keys and Attributes Participating in Keys

 Superkey: specifies a uniqueness constraint that no two distinct tuples in any state r

of R can have the same value

 key K is a superkey with the additional property that removal of any attribute from K will

cause K not to be a superkey any more

 Example:

 The attribute set {Ssn} is a key because no two employees tuples can have the same

value for Ssn

https://vtucode.in

[BCS403]

 Any set of attributes that includes Ssn for example, {Ssn, Name, Address} is a

superkey

 If a relation schema has more than one key, each is called a candidate key

 One of the candidate keys is arbitrarily designated to be the primary key, and the others

are called secondary keys

 In a practical relational database, each relation schema must have a primary key

 If no candidate key is known for a relation, the entire relation can be treated as a default

superkey

 For example {Ssn} is the only candidate key for EMPLOYEE, so it is also the primary

key

 Definition. An attribute of relation schema R is called a prime attribute of R if it is a

member of some candidate key of R. An attribute is called nonprime if it is not a prime

attribute that is, if it is not a member of any candidate key

 In WORKS_ON relation Both Ssn and Pnumber are prime attributes whereas other

attributes are nonprime.

4.4.4 First Normal Form

 Defined to disallow multivalued attributes, composite attributes, and their combinations

 It states that the domain of an attribute must include only atomic (simple, indivisible)

values and that the value of any attribute in a tuple must be a single value from the

domain of that attribute

 1NF disallows relations within relations or relations as attribute values within tuples

 The only attribute values permitted by 1NF are single atomic (or indivisible) values.

 Consider the DEPARTMENT relation schema shown in Figure below

 Primary key is Dnumber

 We assume that each department can have a number of locations

https://vtucode.in

[BCS403]

 The DEPARTMENT schema and a sample relation state are shown in Figure below

 As we can see, this is not in 1NF because Dlocations is not an atomic attribute, as

illustrated by the first tuple in Figure

 There are two ways we can look at the Dlocations attribute:

 The domain of Dlocations contains atomic values, but some tuples can have a set of

these values. In this case, Dlocations is not functionally dependent on the primary key

Dnumber

 The domain of Dlocations contains sets of values and hence is nonatomic. In this

attribute domain

 In either case, the DEPARTMENT relation is not in 1NF

There are three main techniques to achieve first normal form for such a relation:

 1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The

primary key of this relation is the combination {Dnumber, Dlocation}. A distinct tuple

in DEPT_LOCATIONS exists for each location of a department. This decomposes

the non-1NF relation into two 1NF relations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT. In this case, the primary key

becomes the combination {Dnumber, Dlocation}. This solution has the disadvantage

of introducing redundancy in the relation

https://vtucode.in

[BCS403]

3. If a maximum number of values is known for the attribute for example, if it is

known that at most three locations can exist for a department replace the

Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and

Dlocation3. This solution has the disadvantage of introducing NULL values if

most departments have fewer than three locations. Querying on this attribute

becomes more difficult; forexample, consider how you would write the query: List

the departments design.

 Of the three solutions, the first is generally considered best because it does not suffer

from redundancy and it is completely general, having no limit placed on a maximum

number of values

 First normal form also disallows multivalued attributes that are themselves composite.

 These are called nested relations because each tuple can have a relation within it.

 Figure above shows how the EMP_PROJ relation could appear if nesting is allowed

 Each tuple represents an employee entity, and a relation PROJS(Pnumber, Hours)

within each tuple

employee works on each project.

 The schema of this EMP_PROJ relation can be represented as follows:

 EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

 Ssn is the primary key of the EMP_PROJ relation and Pnumber is the partial key of the

nested relation; that is, within each tuple, the nested relation must have unique values of

Pnumber

 To normalize this into 1NF, we remove the nested relation attributes into a new relation

and propagate the primary key into it; the primary key of the new relation will combine

the partial key with the primary key of the original relation

 Decomposition and primary key propagation yield the schemas EMP_PROJ1 and

EMP_PROJ2,

https://vtucode.in

[BCS403]

4.4.5 Second Normal Form

 Second normal form (2NF) is based on the concept of full functional dependency

 full functional dependency if removal of any

attribute A from X means that the dependency does not hold any more; that is, for any

 {A}) does not functionally determine Y

 partial dependency

removed from X and the de

 Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully

functionally dependent on the primary key of R

 The test for 2NF involves testing for functional dependencies whose left-hand side

attributes are part of the primary key

 If the primary key contains a single attribute, the test need not be applied at all

https://vtucode.in

[BCS403]

 The EMP_PROJ relation is in 1NF but is not in 2NF.

 The nonprime attribute Ename violates 2NF because of FD2, as do the nonprime

attributes Pname and Plocation because of FD3

 The functional dependencies FD2 and FD3 make Ename, Pname, and Plocation

partially dependent on the primary key {Ssn, Pnumber} of EMP_PROJ, thus violating the

2NF test.

 If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a

number of 2NF relations in which nonprime attributes are associated only with the

part of the primary key on which they are fully functionally dependent.

 Therefore, the functional dependencies FD1, FD2, and FD3 lead to the decomposition of

EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in Figure below,

each of which is in 2NF.

4.4.6 Third Normal Form

 Transitive functional dependency

A functional dependency X Y in a relation schema R is a transitive dependency if

there exists a set of attribute Z that are neither a primary nor a subset of any key of

R(candidate key) and both X Z and Y Z holds

 Example:

 SSN DMGRSSN is a transitive FD since SSN DNUMBER and DNUMBER

 DMGRSSN hold

https://vtucode.in

[BCS403]

Dnumber is neither a key itself nor a subset of the key of EMP_DEPT

 SSN ENAME is non-transitive since there is no set of attributes X where

SSN X and X ENAME

 Definition: A relation schema R is in third normal form (3NF) if it is in 2NF and no

non-prime attribute A in R is transitively dependent on the primary key

 The relation schema EMP_DEPT is in 2NF, since no partial dependencies on a key

exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of

Dmgr_ssn (and also Dname) on Ssn via Dnumber

 We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas

ED1 and ED2

 ED1 and ED2 represent independent entity facts about employees and departments

 A NATURAL JOIN operation on ED1 and ED2 will recover the original relation

EMP_DEPT without generating spurious tuples

 Problematic FD

 Left-hand side is part of primary key

 Left-hand side is a non-key attribute

 2NF and 3NF normalization remove these problem FDs by decomposing the original

relation into new relations

 In general, we want to design our relation schemas so that they have neither partial nor

transitive dependencies because these types of dependencies cause the update

anomalies

https://vtucode.in

[BCS403]

https://vtucode.in

[BCS403]

4.5 General Definition of Second and Third Normal Form

 Takes into account all candidate keys of a relation into account

 Definition of 2NF: A relation schema R is in second normal form (2NF) if every

nonprime attribute A in R is not partially dependent on any key of R

 Consider the relation schema LOTS which describes parcels of land for sale in various

counties of a state

 Suppose that there are two candidate keys: Property_id# and {County_name, Lot#}; that

is, lot numbers are unique only within each county, but Property_id# numbers are unique

across counties for the entire state.

 Based on the two candidate keys Property_id# and {County_name, Lot#}, the functional

dependencies FD1 and FD2 hold

 We choose Property_id# as the primary key, but no special consideration will be given to

this key over the other candidate key

 FD3 says that the tax rate is fixed for a given county (does not vary lot by lot within the

same county)

 FD4 says that the price of a lot is determined by its area regardless of which county it is

in.

 The LOTS relation schema violates the general definition of 2NF because Tax_rate is

partially dependent on the candidate key {County_name, Lot#}, due to FD3

 To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2

https://vtucode.in

[BCS403]

 We construct LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS

and placing it with County_name (the left-hand side of FD3 that causes the partial

dependency) into another relation LOTS2.

 Both LOTS1 and LOTS2 are in 2NF.

 Definition of 3NF: A relation schema R is in third normal form (3NF) if, whenever a

A is a prime attribute of R

 According to this definition, LOTS2 is in 3NF

 FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime

attribute in LOTS1

 To normalize LOTS1 into 3NF, we decompose it into the relation schemas LOTS1A and

LOTS1B

 We construct LOTS1A by removing the attribute Price that violates 3NF from LOTS1 and

placing it with Area (the lefthand side of FD4 that causes the transitive dependency) into

another relation LOTS1B.

 Both LOTS1A and LOTS1B are in 3NF

https://vtucode.in

[BCS403]

4.6 Boyce-Codd Normal Form

 Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was

found to be stricter than 3NF

 Every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in

BCNF

 Definition. A relation schema R is in BCNF if whenever a nontrivial functional

 The formal definition of BCNF differs from the definition of 3NF in that condition (b) of

3NF, which allows A to be prime, is absent from BCNF. That makes BCNF a stronger

normal form compared to 3NF

 In our example, FD5 violates BCNF in LOTS1A because AREA is not a superkey of

LOTS1A

 FD5 satisfies 3NF in LOTS1A because County_name is a prime attribute (condition b),

but this condition does not exist in the definition of BCNF

 We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY. This

decomposition loses the functional dependency FD2 because its attributes no longer

coexist in the same relation after decomposition.

 In practice, most relation schemas that are in 3NF are also in BCNF

 Only if X A holds in a relation schema R with X not being a superkey and A being a

prime attribute will R be in 3NF but not in BCNF

 Example: consider the relation TEACH with the following dependencies:

https://vtucode.in

[BCS403]

 -- means that each instructor teaches one course

 {Student, Course} is a candidate key for this relation

 The dependencies shown follow the pattern in Figure below with Student as A, Course

as B, and Instructor as C

 Hence this relation is in 3NF but not BCNF

 Decomposition of this relation schema into two schemas is not straightforward because

it may be decomposed into one of the three following possible pairs:

 1. R1(Student, Instructor) and R2(Student, Course)

 2. R1(Course, Instructor) and R2(Course, Student)

 3. R1(Instructor, Course)and R2(Instructor, Student)

 It is generally not sufficient to check separately that each relation schema in the

database is, say, in BCNF or 3NF

 Rather, the process of normalization through decomposition must also confirm the

existence of additional properties that the relational schemas, taken together, should

possess. These would include two properties:

 The nonadditive join or lossless join property, which guarantees that the spurious

tuple generation problem does not occur with respect to the relation schemas

created after decomposition.

 The dependency preservation property, which ensures that each functional

dependency is represented in some individual relation resulting after decomposition.

https://vtucode.in

[BCS403]

 We are not able to meet the functional dependency preservation ,but we must meet the

non additive join property

 Nonadditive Join Test for Binary Decomposition:

 A decomposition D={R1, R2} of R has the lossless join property with respect to a set

 of functional dependencies F on R if and only if either

 The FD ((R1 R2 R1-R2)is in F+ or

 The FD ((R1 R2 R2-R1)is in F+

 The third decomposition meets the test

 R1 R2 is Instructor

 R1-R2 is Course

 Hence, the proper decomposition of TEACH into BCNF relations is:

 TEACH1(Instructor,Course) and TEACH2(Instructor,Student)

 In general, a relation R not in BCNF can be decomposed so as to meet the nonadditive

join prorperty by the following procedure. It decomposes R successively into set of

relations that are in BCNF:

 causes violation of BCNF. R may be decomposed into two relations:

 R A

 XA

 If either R-A or XA is not in BCNF, repeat the process

4.7 Multivalued Dependency and Fourth Normal Form

 For example, consider the relation EMP shown in Figure below:

 A tuple in this EMP relation represents the fact that an employee whose name is

Ename works on the project whose name is Pname and has a dependent whose

name is Dname

 An employee may work on several projects and may have several dependents

https://vtucode.in

[BCS403]

 To keep the relation state consistent, and to avoid any spurious relationship between

the two independent attributes, we must have a separate tuple to represent every

 In the relation state shown in the EMP, the employee Smith works on two projects

tuples to represent these facts together

 The relation EMP is an all-key relation (with key made up of all attributes) and

 relation

 There is a redundancy in the relation EMP-the dependent information is repeated for

every project and project information is repeated for every dependent

 To address this situation, the concept of multivalued dependency(MVD) was

proposed and based on this dependency, the fourth normal form was defined

 Multivalued dependencies are a consequence of 1NF which disallows an attribute

in a tuple to have a set of values, and the accompanying process of converting an

unnormalized relation into 1NF

 Informally, whenever two independent 1:N relationships are mixed in the same

relation, R(A, B, C), an MVD may arise

4.7.1 Formal Definition of Multivalued Dependency

Definition.

are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples

t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the

following properties where we use Z to denote (R (X Y))

 t3[X] = t4[X] = t1[X] = t2[X].

 t3[Y] = t1[Y] and t4[Y] = t2[Y].

 t3[Z] = t2[Z] and t4[Z] = t1[Z].

Let X= Ename, Y=Pname

t1[Ename]=t2[ename]=Smith

Z= (EMP-(Ename Pname))

 = Dname

 t3(Ename)=t4(Ename)=t1(Ename)=t2(Ename)=Smith

https://vtucode.in

[BCS403]

 t3(Pname)=t1(Pname)=X and t4(Pname)=t2(Pname)=Y

 t3(Dname)=t2(Dname)=Anna and t4(Dname)=t1(Dname)=John

 Whenever X Y holds, we say that X multidetermines Y. Because of the symmetry in

the definition, whenever X Y holds in R, so does X Z. Hence, X Y implies

X Z, and therefore it is sometimes written as X Y|Z.

 trivial MVD if

 (a) Y is a subset of X, or

 (b) X Y = R

 For example, the relation EMP_PROJECTS has the trivial MVD

 An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD

 If we have a nontrivial MVD in a relation, we may have to repeat values redundantly in

the tuples

Dname

value of Pname)

 This redundancy is clearly undesirable.

 We now present the definition of fourth normal form (4NF), which is violated when a

relation has undesirable multivalued dependencies, and hence can be used to identify

and decompose such relations

 Definition: A relation schema R is in 4NF with respect to a set of dependencies F

(that includes functional dependencies and multivalued dependencies) if, for every

nontrivial multivalued dependency X Y in F+ X is a superkey for R

 The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF

consists of decomposing it so that each MVD is represented by a separate relation

where it becomes a trivial MVD

https://vtucode.in

[BCS403]

 We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS

 Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs

EMP_DEPENDENTS are trivial MVDs

 No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No

FDs hold in these relation schemas either

 We can state the following points:

 An all-key relation is always in BCNF since it has no FDs

 An all-

Pname | Dname, is not in 4NF

 A relation that is not in 4NF due to a nontrivial MVD must be decomposed to convert it

into a set of relations in 4NF

 The decomposition removes the redundancy caused by the MVD

4.8 Join Dependencies and Fifth Normal Form

 A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation schema

R, specifies a constraint on the states r of R. The constraint states that every legal

state r of R should have a nonadditive join decomposition into R1, R2, ..., Rn. Hence,

for every such r we have

 A join dependency JD(R1, R2, ..., Rn), specified on relation schema R, is a trivial JD if

one of the relation schemas Ri in JD(R1, R2, ..., Rn) is equal to R.

Fifth normal form (project-join normal form)

 A relation schema R is in fifth normal form (5NF) (or project-join normal form

(PJNF)) with respect to a set F of functional, multivalued, and join dependencies if, for

every nontrivial join dependency JD(R1, R2, ..., Rn) in F+ every Ri is a superkey of R.

 A database is said to be in 5NF, if and only if,

 It's in 4NF

https://vtucode.in

[BCS403]

 If we can decompose table further to eliminate redundancy and anomaly, and when

we re-join the decomposed tables by means of candidate keys, we should not be

losing the original data or any new record set should not arise. In simple words,

joining two or more decomposed table should not lose records nor create new

records.

Fig: The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R1, R2, R3)

Fig: Decomposing the relation SUPPLY into the 5NF relations R1, R2, R3.

https://vtucode.in

[BCS403]

Database Management System]

4.1 Introduction

SQL was called SEQUEL (Structured English Query Language) and was designed and

implemented at IBM Research.The SQL language may be considered one of the major reasons for

the commercial success of relational databases. SQL is a comprehensive database language. It has

statements for data definitions, queries, and updates. Hence, it is both a DDL and a DML. In

addition, it has facilities for defining views on the database, for specifying security and

authorization, for defining integrity constraints, and for specifying transaction controls. It also has

rules for embedding SQL statements into a general-purpose programming language such as Java,

COBOL, or C/C++.

4.2 SQL Data Definition and Data Types

SQL uses the terms table, row, and column for the formal relational model terms relation, tuple, and

attribute, respectively. The main SQL command for data definition is the CREATE statement, which

can be used to create schemas, tables (relations), domains, views, assertions and triggers.

4.2.1 Schema and Catalog Concepts in SQL

An SQL schema is identified by a schema name, and includes an authorization identifier to

indicate the user or account who owns the schema, as well as descriptors for each element in

the schema. Schema elements include tables, constraints, views, domains, and other

constructs (such as authorization grants) that describe the schema. A schema is created via

the CREATE SCHEMA statement .

For example, the following statement creates a schema called COMPANY, owned by the

 CREATE SCHEMA COMPANY AUTHORIZATION

In general, not all users are authorized to create schemas and schema elements. The privilege

to create schemas, tables, and other constructs must be explicitly granted to the relevant user

accounts by the system administrator or DBA.

SQL uses the concept of a catalog a named collection of schemas in an SQL environment.

A catalog always contains a special schema called INFORMATION_SCHEMA, which

provides information on all the schemas in the catalog and all the element descriptors in these

https://vtucode.in page 1

[BCS403]

SQL

Database Management System]

schemas. Integrity constraints such as referential integrity can be defined between relations

only if they exist in schemas within the same catalog. Schemas within the same catalog can

also share certain elements, such as domain definitions.

4.2.2 The CREATE TABLE Command in SQL

The CREATE TABLE command is used to specify a new relation by giving it a name and specifying

its attributes and initial constraints. The attributes are specified first, and each attribute is given a

name, a data type to specify its domain of values, and any attribute constraints, such as NOT NULL.

The key, entity integrity, and referential integrity constraints can be specified within the CREATE

TABLE statement after the attributes are declared, or they can be added later using the ALTER

TABLE command.

Typically, the SQL schema in which the relations are declared is implicitly specified in the

environment in which the CREATE TABLE statements are executed. Alternatively, we can

explicitly attach the schema name to the relation name, separated by a period. For example, by

writing

 CREATE TABLE COMPANY.EMPLOYEE ...

rather than

 CREATE TABLE EMPLOYEE ...

The relations declared through CREATE TABLE statements are called base tables.

Examples:

https://vtucode.in page 2

 [BCS403]

Database Management System]

https://vtucode.in page 3

[BCS403]

Database Management System]

4.2.3 Attribute Data Types and Domains in SQL

Basic data types

1. Numeric data types includes

 integer numbers of various sizes (INTEGER or INT, and SMALLINT)

 floating-point (real) numbers of various precision (FLOAT or REAL, and

 DOUBLE PRECISION).

 Formatted numbers can be declared by using DECIMAL(i,j) or

 DEC(i,j) or NUMERIC(i,j) where

 i - precision, total number of decimal digits

 j - scale, number of digits after the decimal point

2. Character-string data types

 fixed length CHAR(n) or CHARACTER(n), where n is the number of characters

 varying length VARCHAR(n) or CHAR VARYING(n) or CHARACTER VARYING(n),

where n is the maximum number of characters

 When specifying a literal string value, it is placed between single quotation marks

(apostrophes), and it is case sensitive

 For fixed length strings, a shorter string is padded with blank characters to the right

 Padded blanks are generally ignored when strings are compared

 Another variable-length string data type called CHARACTER LARGE OBJECT or CLOB

is also available to specify columns that have large text values, such as documents

 The CLOB maximum length can be specified in kilobytes (K), megabytes (M), or gigabytes

 (G)

 For example, CLOB(20M) specifies a maximum length of 20 megabytes.

3. Bit-string data types are either of

 fixed length n BIT(n) or varying length BIT VARYING(n), where n is the maximum

 number of bits.

 The default for n, the length of a character string or bit string, is 1.

https://vtucode.in page 4

[BCS403]

Database Management System]

 Literal bit strings are placed between single quotes but preceded by a B to distinguish them

 Another variable-length bitstring data type called BINARY LARGE OBJECT or BLOB is

also available to specify columns that have large binary values, such as images.

 The maximum length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits

(G)

 For example, BLOB(30G) specifies a maximum length of 30 gigabits.

4. A Boolean data type has the traditional values of TRUE or FALSE.In SQL, because of the

presence of NULL values, a three-valued logic is used, so a third possible value for a Boolean

data type is UNKNOWN

5. The DATE data type has ten positions, and its components are YEAR, MONTH, and DAY in

the form YYYY-MM-DD

6. The TIME data type has at least eight positions, with the components HOUR, MINUTE,

and SECOND in the form HH:MM:SS.

Only valid dates and times should be allowed by the SQL implementation.

7. TIME WITH TIME ZONE data type includes an additional six positions for specifying the

displacement from the standard universal time zone, which is in the range +13:00 to 12:59

in units of HOURS:MINUTES. If WITH TIME ZONE is not included, the default is the local

time zone for the SQL session.

Additional data types

1. Timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a minimum

of six positions for decimal fractions of seconds and an optional WITH TIME ZONE

qualifier.

2. INTERVAL data type. This specifies an interval a relative value that can be used to

increment or decrement an absolute value of a date, time, or timestamp. Intervals are

qualified to be either YEAR/MONTH intervals or DAY/TIME intervals.

It is possible to specify the data type of each attribute directly or a domain can be declared, and the

domain name used with the attribute Specification. This makes it easier to change the data type for a

domain that is used by numerous attributes in a schema, and improves schema readability. For

example, we can create a domain SSN_TYPE by the following statement:

 CREATE DOMAIN SSN_TYPE AS CHAR(9);

https://vtucode.in page 5

[BCS403]

Database Management System]

We can use SSN_TYPE in place of CHAR(9) for the attributes Ssn and Super_ssn of EMPLOYEE,

Mgr_ssn of DEPARTMENT, Essn of WORKS_ON, and Essn of DEPENDENT

4.3 Specifying Constraints in SQL

Basic constraints that can be specified in SQL as part of table creation:

 key and referential integrity constraints

 Restrictions on attribute domains and NULLs

 constraints on individual tuples within a relation

4.3.1 Specifying Attribute Constraints and Attribute Defaults

Because SQL allows NULLs as attribute values, a constraint NOT NULL may be specified if NULL
is not permitted for a particular attribute. This is always implicitly specified for the attributes that are
part of the primary key of each relation, but it can be specified for any other attributes whose values
are required not to be NULL.

It is also possible to define a default value for an attribute by appending the clause DEFAULT
<value> to an attribute definition. The default value is included in any new tuple if an explicit value
is not provided for that attribute.

 CREATE TABLE DEPARTMENT

 (. . . ,

)

Another type of constraint can restrict attribute or domain values using the CHECK clause following

an attribute or domain definition . For example, suppose that department numbers are restricted to

integer numbers between 1 and 20; then, we can change the attribute declaration of Dnumber in the

DEPARTMENT table to the following:

 Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

The CHECK clause can also be used in conjunction with the CREATE DOMAIN statement.For

example, we can write the following statement:

 CREATE DOMAIN D_NUM AS INTEGER

https://vtucode.in page 6

[BCS403]

Database Management System]

 CHECK (D_NUM > 0 AND D_NUM < 21);

We can then use the created domain D_NUM as the attribute type for all attributes that refer to

department number such as Dnumber of DEPARTMENT, Dnum of PROJECT, Dno of

EMPLOYEE, and so on.

4.3.2 Specifying Key and Referential Integrity Constraints

The PRIMARY KEY clause specifies one or more attributes that make up the primary key of a
relation. If a primary key has a single attribute, the clause can follow the attribute directly. For
example, the primary key of DEPARTMENT can be specified as:

 Dnumber INT PRIMARY KEY;

The UNIQUE clause can also be specified directly for a secondary key if the secondary key is a
single attribute, as in the following example:

 Dname VARCHAR(15) UNIQUE;

Referential integrity is specified via the FOREIGN KEY clause

 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
 FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber

A referential integrity constraint can be violated when tuples are inserted or deleted, or when a

foreign key or primary key attribute value is modified. The default action that SQL takes for an

integrity violation is to reject the update operation that will cause a violation, which is known as

the RESTRICT option.

The schema designer can specify an alternative action to be taken by attaching a referential

triggered action clause to any foreign key constraint. The options include SET NULL,

CASCADE, and SET DEFAULT. An option must be qualified with either ON DELETE or ON

UPDATE

 FOREIGN KEY(Dno) REFERENCES DEPARTMENT(Dnumber) ON DELETE SET

 DEFAULT ON UPDATE CASCADE

 FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET

NULL ON UPDATE CASCADE

 FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) ON DELETE

CASCADE ON UPDATE CASCADE

https://vtucode.in page 7

[BCS403]

Database Management System]

 In general, the action taken by the DBMS for SET NULL or SET DEFAULT is the same for

both ON DELETE and ON UPDATE: The value of the affected referencing attributes is changed

to NULL for SET NULL and to the specified default value of the referencing attribute for SET

DEFAULT.

The action for CASCADE ON DELETE is to delete all the referencing tuples whereas the action

for CASCADE ON UPDATE is to change the value of the referencing foreign key attribute(s) to the

updated (new) primary key value for all the referencing tuples . It is the responsibility of the

database designer to choose the appropriate action and to specify it in the database schema. As a

general rule, the CASCADE option is suitable for

relations that represent multivalued attributes, such as DEPT_LOCATIONS; and for relations that

represent weak entity types, such as DEPENDENT.

4.3.3 Giving Names to Constraints

The names of all constraints within a particular schema must be unique. A constraint name is used

to identify a particular constraint in case the constraint must be dropped later and replaced with

another constraint.

4.3.4 Specifying Constraints on Tuples Using CHECK

 In addition to key and referential integrity constraints, which are specified by special keywords,

other table constraints can be specified through additional CHECK clauses at the end of a

CREATE TABLE statement. These can be called tuple-based constraints because they apply to

each tuple individually and are checked whenever a tuple is inserted or modified

 For example, suppose that the DEPARTMENT table had an additional attribute Dept_create_date,

 which stores the date when the department was created. Then we could add the following CHECK

clause at the end of the CREATE TABLE statement for the DEPARTMENT table to make sure

 CHECK (Dept_create_date <= Mgr_start_date);

4.4 Basic Retrieval Queries in SQL

SQL has one basic statement for retrieving information from a database: the SELECT statement.

4.4.1 The SELECT-FROM-WHERE Structure of Basic SQL Queries

The basic form of the SELECT statement, sometimes called a mapping or a select-from-where

block, is formed of the three clauses SELECT, FROM, and WHERE and has the following form:

https://vtucode.in page 8

[BCS403]

Database Management System]

 SELECT

 FROM <table list>

 WHERE <condition>;

 Where,

 <attribute list> is a list of attribute names whose values are to be retrieved by the
query

 <table list> is a list of the relation names required to process the query
 <condition> is a conditional (Boolean) expression that identifies the tuples to be

retrieved by the query.

 Examples:

1.

 SELECT Bdate, Address

 FROM EMPLOYEE

 WHERE AND AND

 The SELECT clause of SQL specifies the attributes whose values are to be retrieved, which

are called the projection attributes. The WHERE clause specifies the Boolean condition that

must be true for any retrieved tuple, which is known as the selection condition.

2.

 SELECT Fname, Lname, Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE AND Dnumber=Dno;

In the WHERE clause selection condition that

chooses the particular tuple of interest in the DEPARTMENT table, because Dname is an

attribute of DEPARTMENT. The condition Dnumber = Dno is called a join condition,

because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE,

whenever the value of Dnumber in DEPARTMENT is equal to thevalue of Dno in

EMPLOYEE.A query that involves only selection and join conditions plus projection

attributes is known as a select-project-join query.

3.

ast name, address, and birth date.

https://vtucode.in page 9

[BCS403]

Database Management System]

 SELECT Pnumber, Dnum, Lname, Address, Bdate

 FROM PROJECT, DEPARTMENT, EMPLOYEE

 WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

The join condition Dnum = Dnumber relates a project tuple to its controlling department tuple,

whereas the join condition Mgr_ssn = Ssn relates the controlling department tuple to the

employee tuple who manages that department. Each tuple in the result will be a combination of

one project, one department, and one employee that satisfies the join conditions. The projection

attributes are used to choose the attributes to be displayed from each combined tuple.

4.4.2 Ambiguous Attribute Names, Aliasing, Renaming, and Tuple Variables

In SQL, the same name can be used for two or more attributes as long as the attributes are in

different relations. If this is the case, and a multitable query refers to two or more attributes with

the same name, we must qualify the attribute name with the relation name to prevent ambiguity.

This is done by prefixing the relation name to the attribute name and separating the two by a

period.

department

 SELECT Fname, EMPLOYEE.Name, Address

 FROM EMPLOYEE, DEPARTMENT

 WHERE AND

 DEPARTMENT.Dnumber=EMPLOYEE.Dnumber;

 The ambiguity of attribute names also arises in the case of queries that refer to the same relation

 twice. For example consider the query:

 name and the first and last name of his or her immediate supervisor.

 SELECT E.Fname, E.Lname, S.Fname, S.Lname

 FROM EMPLOYEE AS E, EMPLOYEE AS S

 WHERE E.Super_ssn=S.Ssn;

In this case, we are required to declare alternative relation names E and S, called aliases or tuple

variables, for the EMPLOYEE relation. An alias can follow the keyword AS, or it can directly

follow the relation name for example, by writing EMPLOYEE E, EMPLOYEE S. It is also

possible to rename the relation attributes within the query in SQL by giving them aliases. For

example, if we write

 EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

https://vtucode.in page 10

[BCS403]

Database Management System]

 in the FROM clause, Fn becomes an alias for Fname, Mi for Minit, Ln for Lname, and so on

4.4.3 Unspecified WHERE Clause and Use of the Asterisk

A missing WHERE clause indicates no condition on tuple selection; hence, all tuples of the relation

specified in the FROM clause qualify and are selected for the query result.If more than one relation

is specified in the FROM clause and there is no WHERE clause, then the CROSS PRODUCT all

possible tuple combinations of these relations is selected.

Example: Select all EMPLOYEE Ssns and all combinations of EMPLOYEE Ssn and
DEPARTMENT Dname in the database.

 SELECT Ssn

 FROM EMPLOYEE;

 SELECT Ssn, Dname

 FROM EMPLOYEE, DEPARTMENT;

To retrieve all the attribute values of the selected tuples, we do not have to list the attribute names

explicitly in SQL; we just specify an asterisk (*), which stands for all the attributes. For example, the

following query retrieves all the attribute values of any EMPLOYEE who works in DEPARTMENT

number 5

 SELECT * FROM EMPLOYEE WHERE Dno=5;

 SELECT * FROM EMPLOYEE, DEPARTMENT WHERE

 AND Dno=Dnumber;

 SELECT * FROM EMPLOYEE, DEPARTMENT;

4.4.4 Tables as Sets in SQL

SQL usually treats a table not as a set but rather as a multiset; duplicate tuples can appear more than

once in a table, and in the result of a query. SQL does not automatically eliminate duplicate tuples in

the results of queries, for the following reasons:

 Duplicate elimination is an expensive operation. One way to implement it is to sort the tuples

first and then eliminate duplicates.

 The user may want to see duplicate tuples in the result of a query.

 When an aggregate function is applied to tuples, in most cases we do not want to eliminate

duplicates.

If we do want to eliminate duplicate tuples from the result of an SQL query, we use the keyword

DISTINCT in the SELECT clause, meaning that only distinct tuples should remain in the result.

https://vtucode.in page 11

[BCS403]

Database Management System]

 Example : Retrieve the salary of every employee and all distinct salary values

 (a) SELECT ALL Salary FROM EMPLOYEE;

 (b) SELECT DISTINCT Salary FROM EMPLOYEE;

SQL has directly incorporated some of the set operations from mathematical set theory, which are
also part of relational algebra. There are

 set union (UNION)

 set difference (EXCEPT) and

 set intersection (INTERSECT)

The relations resulting from these set operations are sets of tuples; that is, duplicate tuples are

eliminated from the result. These set operations apply only to union-compatible relations, so we must

make sure that the two relations on which we apply the operation have the same attributes and that

the attributes appear in the same order in both relations.

Example: Make a list of all project numbers for projects that involve an employee whose last name

 worker or as a manager of the department that controls the project

 (SELECT DISTINCT Pnumber FROM PROJECT, DEPARTMENT,

 EMPLOYEE WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

 UNION

 (SELECT DISTINCT Pnumber FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Essn=Ssn AND

https://vtucode.in page 12

[BCS403]

Database Management System]

4.4.5 Substring Pattern Matching and Arithmetic Operators

Several more features of SQL

The first feature allows comparison conditions on only parts of a character string, using the LIKE

comparison operator. This can be used for string pattern matching. Partial strings are specified

using two reserved characters:

 % replaces an arbitrary number of zero or more characters

 _ (underscore) replaces a single character

For example, consider the following query: Retrieve all employees whose address is in Houston,

Texas

 SELECT Fname, Lname FROM EMPLOYEE WHERE Address

 LIKE

To retrieve all employees who were born during the 1950s, we can use Query

 SELECT Fname, Lname FROM EMPLOYEE

 WHERE Bdate LIKE

If an underscore or % is needed as a literal character in the string, the character should be preceded

by an escape character, which is specified after the string using the keyword ESCAPE. For example,

_CD\ \ \ is specified as the

escape character.Also, we need a rule to they

are to be included in a

needed, as

ending the string.

Another feature allows the use of arithmetic in queries.The standard arithmetic operators for addition

(+), subtraction (), multiplication (*), and division (/) can be applied to numeric values or attributes

with numeric domains. For example,suppose that we want to see the effect of giving all employees

 the following query:

 SELECT E.Fname, E.Lname, 1.1 * E.Salary AS Increased_sal

 FROM EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P

 WHERE E.Ssn=W.Essn AND W.Pno=P.Pnumber AND

Example: Retrieve all employees in department 5 whose salary is between $30,000 and $40,000.

 SELECT * FROM EMPLOYEE WHERE (Salary BETWEEN 30000 AND

 40000) AND Dno = 5;

The condition (Salary BETWEEN 30000 AND 40000) is equivalent to the condition((Salary >=

30000) AND (Salary <= 40000)).

https://vtucode.in page 13

[BCS403]

Database Management System]

4.4.6 Ordering of Query Results

SQL allows the user to order the tuples in the result of a query by the values of one or more of the

attributes that appear in the query result, by using the ORDER BY clause.

Example:Retrieve a list of employees and the projects they are working on, ordered by department

and, within each department, ordered alphabetically bylast name, then first name.

 SELECT D.Dname, E.Lname, E.Fname, P.Pname

 FROM DEPARTMENT D, EMPLOYEE E, WORKS_ON W, PROJECT P

 WHERE D.Dnumber= E.Dno AND E.Ssn= W.Essn AND W.Pno= P.Pnumber

 ORDER BY D.Dname, E.Lname, E.Fname;

The default order is in ascending order of values.We can specify the keyword DESC if we want to

see the result in a descending order of values. The keyword ASC can be used to specify ascending

order explicitly. For example, if we want descending alphabetical order on Dname and ascending

order on Lname, Fname, the ORDER BY clause can be written as

 ORDER BY D.Dname DESC, E.Lname ASC, E.Fname ASC

4.5 INSERT, DELETE, and UPDATE Statements in SQL

4.5.1The INSERT Command

INSERT is used to add a single tuple to a relation. We must specify the relation name and a list of

values for the tuple. The values should be listed in the same order in which the corresponding

attributes were specified in the CREATE TABLE command.

Example: INSERT INTO EMPLOYEE VALUES -

 12-

 INSERT INTO EMPLOYEE (Fname, Lname, Dno, Ssn)

 VALUES

A second form of the INSERT statement allows the user to specify explicit attribute names that

correspond to the values provided in the INSERT command. The values must include all attributes

with NOT NULL specification and no default value. Attributes with NULL allowed or DEFAULT

values are the ones that can be left out.

A variation of the INSERT command inserts multiple tuples into a relation in conjunction with

creating the relation and loading it with the result of a query. For example, to create a temporary

table that has the employee last name, project name, and hours per week for each employee working

on a project, we can write the statements in U3A and U3B:

https://vtucode.in page 14

[BCS403]

Database Management System]

 U3A: CREATE TABLE WORKS_ON_INFO(

 Emp_name VARCHAR(15),

 Proj_name VARCHAR(15),

 Hours_per_week DECIMAL(3,1));

 U3B: INSERT INTO WORKS_ON_INFO

 (Emp_name, Proj_name,Hours_per_week)

 SELECT E.Lname, P.Pname, W.Hours

 FROM PROJECT P, WORKS_ON W, EMPLOYEE E

 WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

A table WORKS_ON_INFO is created by U3A and is loaded with the joined information retrieved

from the database by the query in U3B. We can now query WORKS_ON_INFO as we would any

other relation;

4.5.2 The DELETE Command

The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that

used in an SQL query, to select the tuples to be deleted. Tuples are explicitly deleted from only one

table at a time. The deletion may propagate to tuples in other relations if referential triggered actions

are specified in the referential integrity constraints of the DDL.

Example:

 DELETE FROM EMPLOYEE WHERE

Depending on the number of tuples selected by the condition in the WHERE clause, zero, one, or

several tuples can be deleted by a single DELETE command. A missing WHERE clause specifies

that all tuples in the relation are to be deleted; however, the table remains in the database as an empty

table.

4.5.3 The UPDATE Command

The UPDATE command is used to modify attribute values of one or more selected Tuples.An

additional SET clause in the UPDATE command specifies the attributes to be modified and their

new values. For example, to change the location and controlling department number of project

 UPDATE PROJECT SET P WHERE Pnumber=10;

As in the DELETE command, a WHERE clause in the UPDATE command selects the tuples to be

modified from a single relation. However, updating a primary key value may propagate to the

foreign key values of tuples in other relations if such a referential triggered action is specified in the

referential integrity constraints of the DDL.

https://vtucode.in page 15

[BCS403]

Database Management System]

Several tuples can be modified with a single UPDATE command. An example is to give all

 a 10 percent raise in salary, as shown by the following

query

 UPDATE EMPLOYEE

 SET Salary = Salary * 1.1

 WHERE Dno = 5;

Each UPDATE command explicitly refers to a single relation only. To modify multiple relations, we

must issue several UPDATE commands.

4.6 Additional Features of SQL

 SQL has various techniques for specifying complex retrieval queries, including nested queries,

aggregate functions, grouping, joined tables, outer joins, and recursive queries; SQL views,

triggers, and assertions; and commands for schema modification.

 SQL has various techniques for writing programs in various programming languages that include

SQL statements to access one or more databases.

 SQL has transaction control commands. These are used to specify units of database processing

for concurrency control and recovery purposes.

 SQL has language constructs for specifying the granting and revoking of privileges to users.

 SQL has language constructs for creating triggers. These are generally referred to as active

database techniques, since they specify actions that are automatically triggered by events such as

database updates.

 SQL has incorporated many features from object-oriented models to have more powerful

capabilities, leading to enhanced relational systems known as object-relational.

 SQL and relational databases can interact with new technologies such as XML

https://vtucode.in page 16

[BCS403]

