Database Management System [BCS403]

Module-4: SQL- Advances Queries

1.1 More Complex SQL Retrieval Queries

Additional features allow users to specify more complex retrievals from database

1.1.1 Comparisons Involving NULL and Three-Valued Logic
SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but
that it usually has one of three different interpretations—value

Example

1. Unknown value. A person’s date of birth is not known, so it is represented by NULL in the
database.

2. Unavailable or withheld value. A person has a home phone but does not want it to be
listed, so it is withheld and represented as NULL in the database.

3. Not applicable attribute. An attribute CollegeDegree would be NULL for a person who has no

college degrees because it does not apply to that person.

Each individual NULL value is considered to be different from every other NULL value in the various
database records. When a NULL is involved in @ comparison operation, the result is considered to
be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with
values TRUE, FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with
values TRUE or FALSE. It is therefore necessary to define the results (or truth values) of three-

valued logical expressions when the logical connectives AND, OR, and NOT are used

Table 5.1 Logical Connectives in Three-Valued Logic

(a) AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWRN FALSE UNKNOWN
(b) OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
(c) NOT
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWRN

https:/Iivtucode.in page 18

Database Management System [BCS403]

The rows and columns represent the values of the results of comparison conditions, which would
typically appear in the WHERE clause of an SQL query.

In select-project-join queries, the general rule is that only those combinations of tuples that evaluate
the logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations
that evaluate to FALSE or UNKNOWN are not selected.

SQL allows queries that check whether an attribute value is NULL using the comparison operators
IS or IS NOT.
Example: Retrieve the names of all employees who do not have supervisors.

SELECT Fname, Lname

FROM EMPLOYEE

WHERE Super_ssn IS NULL;

1.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons

Some queries require that existing values in the database be fetched and then used in a
comparison condition. Such queries can be conveniently formulated by using nested queries,
which are complete select-from-where blocks within the WHERE clause of another query. That
other query is called the outer query
Example1: List the project numbers of projects that have an employee with last name ‘Smith’ as
manager

SELECT DISTINCT Pnumber FROM PROJECT WHERE

Pnumber IN

(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND Lname="‘smith’);
Example2: List the project numbers of projects that have an employee with last name ‘Smith’ as
either manager or as worker.

SELECT DISTINCT Pnumber FROM PROJECT WHERE

Pnumber IN

(SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND Lname="‘smith’)

OR

Pnumber IN

(SELECT Pno FROM WORKS_ON, EMPLOYEE WHERE Essn=Ssn AND

Lname="‘smith’);
We make use of comparison operator IN, which compares a value v with a set (or multiset) of
values V and evaluates to TRUE if v is one of the elements in V.

https:/Ilvtucode.in page 19

Database Management System [BCS403]

The first nested query selects the project numbers of projects that have an employee with last name
‘Smith’ involved as manager. The second nested query selects the project numbers of projects that
have an employee with last name ‘Smith’ involved as worker. In the outer query, we use the OR
logical connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in the result

of either nested query.

SQL allows the use of tuples of values in comparisons by placing them within parentheses. For
example, the following query will select the Essns of all employees who work the same (project,
hours) combination on some project that employee ‘John Smith’ (whose Ssn = ‘“123456789’) works

on
SELECT DISTINCT Essn
FROM WORKS_ON
WHERE (Pno, Hours) IN (SELECT Pno, Hours

FROM WORKS_ON
WHERE Essn="123456789" };

In this example, the IN operator compares the subtuple of values in parentheses (Pno,Hours) within
each tuple in WORKS_ON with the set of type-compatible tuples produced by the nested query.

Nested Queries::Comparison Operators
Other comparison operators can be used to compare a single value v to a set or multiset V. The =
ANY (or = SOME) operator returns TRUE if the value v is equal to some value in the set V and is
hence equivalent to IN. The two keywords ANY and SOME have the same effect. The keyword ALL
can also be combined with each of these operators. For example, the comparison condition (v >
ALL V) returns TRUE if the value v is greater than all the values in the set (or multiset) V. For
example is the following query, which returns the names of employees whose salary is greater than
the salary of all the employees in department 5:

SELECT Lname, Fname

FROM EMPLOYEE

WHERE Salary > ALL (SELECT Salary

FROM EMPLOYEE

WHERE Dno=5);
In general, we can have several levels of nested queries. We can once again be faced with possible
ambiguity among attribute names if attributes of the same name exist—one in a relation in the
FROM clause of the outer query, and another in a relation in the FROM clause of the nested query.
The rule is that a reference to an unqualified attribute refers to the relation declared in the
innermost nested query.
To avoid potential errors and ambiguities, create tuple variables (aliases) for all tables referenced in
SQL query

https:/Ilvtucode.in page 20

- Databasc Management System [BCS403]

Example: Retrieve the name of each employee who has a dependent with the same first name and
is the same sex as the employee

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent_name

AND E.Sex=D.Sex);
In the above nested query, we must qualify E.Sex because it refers to the Sex attribute of
EMPLOYEE from the outer query, and DEPENDENT also has an attribute called Sex.

1.1.3 Correlated Nested Queries
Whenever a condition in the WHERE clause of a nested query references some attribute of a
relation declared in the outer query, the two queries are said to be correlated.
Example:

SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN (SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent name

AND E.Sex=D.Sex);
The nested query is evaluated once for each tuple (or combination of tuples) in the outer query. we
can think of query in above example as follows: For each EMPLOYEE tuple, evaluate the nested
query, which retrieves the Essn values for all DEPENDENT tuples with the same sex and name as
that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the result of the nested query,
then select that EMPLOYEE tuple.

1.1.4 The EXISTS and UNIQUE Functions in SQL
EXISTS Functions
The EXISTS function in SQL is used to check whether the result of a correlated nested query is
empty (contains no tuples) or not. The result of EXISTS is a Boolean value

+ TRUE if the nested query result contains at least one tuple, or

* FALSE if the nested query result contains no tuples.
For example, the query to retrieve the name of each employee who has a dependent with the same
first name and is the same sex as the employee can be written using EXISTS functions as follows:

SELECT E.Fname, E.Lname

https:/ivtucode.in page 21

Database Management System [BCS403]

FROM EMPLOYEE AS E

WHERE EXISTS (SELECT *

FROM DEPENDENT AS D

WHERE E.Ssn=D.Essn AND E.Sex=D.Sex

AND E.Fname=D.Dependent_name);
Example: List the names of managers who have at least one dependent

SELECT Fname, Lname

FROM EMPLOYEE

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE Ssn=Essn)

AND

EXISTS (SELECT *

FROM DEPARTMENT

WHERE Ssn=Mgr_ssn);

In general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested query Q,

and it returns FALSE otherwise.

NOT EXISTS Functions
NOT EXISTS(Q) returns TRUE if there are no tuples in the result of nested query Q, and it returns
FALSE otherwise.
Example: Retrieve the names of employees who have no dependents.
SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM DEPENDENT
WHERE Ssn=Essn);

For each EMPLOYEE tuple, the correlated nested query selects all DEPENDENT tuples whose
Essn value matches the EMPLOYEE Ssn; if the result is empty, no dependents are related to the

employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname.

Example: Retrieve the name of each employee who works on all the projects controlled

by department number 5
SELECT Fname, Lname

https:/lvtucode.in page 22

- Database Management System [BCS403]

FROM EMPLOYEE

WHERE NOT EXISTS ((SELECT Pnumber
FROM PROJECT

WHERE Dnum=5)

EXCEPT (SELECT Pno

FROM WORKS_ON

WHERE Ssn=Essn));

UNIQUE Functions

UNIQUE(Q) returns TRUE if there are no duplicate tuples in the result of query Q; otherwise, it
returns FALSE. This can be used to test whether the result of a nested query is a set or a multiset.

1.1.5 Explicit Sets and Renaming of Attributes in SQL
IN SQL it is possible to use an explicit set of values in the WHERE clause, rather than a nested
query. Such a set is enclosed in parentheses.
Example: Retrieve the Social Security numbers of all employees who work on project numbers 1, 2,
or 3.

SELECT DISTINCT Essn

FROM WORKS_ON

WHERE Pno IN (1,2, 3);
In SQL, it is possible to rename any attribute that appears in the result of a query by adding the
qualifier AS followed by the desired new name
Example: Retrieve the last name of each employee and his or her supervisor

SELECT E.Lname AS Employee_name,

S.Lname AS Supervisor_name

FROM EMPLOYEE AS E,

EMPLOYEE AS S

WHERE E.Super_ssn=S.Ssn;

https:/ivtucode.in page 23

Database Management System [BCS403]

1.1.6 Joined Tables in SQL and Outer Joins

An SQL join clause combines records from two or more tables in a database. It creates a set that
can be saved as a table or used as is. A JOIN is a means for combining fields from two tables by
using values common to each. SQL specifies four types of JOIN

1. INNER,

2. OUTER

3. EQUIJOIN and

4. NATURAL JOIN

INNER JOIN

An inner join is the most common join operation used in applications and can be regarded as the
default join-type. Inner join creates a new result table by combining column values of two tables (A
and B) based upon the join- predicate (the condition). The result of the join can be defined as the
outcome of first taking the Cartesian product (or Cross join) of all records in the tables (combining
every record in table A with every record in table B)—then return all records which satisfy the join
predicate

Example: SELECT * FROM employee

INNER JOIN department ON

employee.dno = department.dnumber;

EQUIJOIN and NATURAL JOIN
An EQUIJOIN is a specific type of comparator-based join that uses only equality comparisons in the

join-predicate. Using other comparison operators (such as <) disqualifies a join as an equijoin.

NATURAL JOIN is a type of EQUIJOIN where the join predicate arises implicitly by comparing all
columns in both tables that have the same column-names in the joined tables. The resulting joined

table contains only one column for each pair of equally named columns.

SELECT Fname, Lname, Address

FROM EMPLOYEE/NATURAL JOIN
DEPARTMENT

WHERE Dname="Research’;

https:/Ilvtucode.in page 24

Database Management System [BCS403]

If the names of the join attributes are not the same in the base relations, it is possible to rename the
attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can
be used to rename a relation and all its attributes in the FROM clause.

CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it will

produce rows which combine each row from the first table with each row from the second table.

OUTER JOIN

An outer join does not require each record in the two joined tables to have a matching record. The

joined table retains each record-even if no other matching record exists. Outer joins subdivide

further into

* Left outer joins

* Right outer joins

* Full outer joins

No implicit join-notation for outer joins exists in standard SQL.

» LEFT OUTER JOIN

Every tuple in left table must appear in result

If no matching tuple
Padded with NULL values for attributes of right table

(el "lRetieve the names of employees and their supervisors-

Q8A: SELECT
FROM
WHERE

08B: SELECT
FROM

E.Lname AS Employee_name, S.Lname AS Supervisor_name

EMPLOYEE AS E, EMPLOYEE AS S

= : s _sg = % whose value for Super_ssn is
" Implicit inner join NULL is excluded

E.Lname AS Employee_name,
S.Lname AS Supervisor_name

only employees who have a
supervisor are included in the
result; an EMPLOYEE tuple

If the user requires that all
employees be included, an
OUTER JOIN must be used
explicitly

EMPLOYEE AS E|LEFT OUTER JOIN[EMPLOYEE AS S |

M E.Super_ssn=S.Ssn);

https:/Ilvtucode.in

page 25

Database Management System [BCS403]

» RIGHT OUTER JOIN

Every tuple in right table must appear in result

If no matching tuple
Padded with NULL values for the attributes of left table

» FULL OUTER JOIN

a full outer join combines the effect of applying both left and right outer
joins.

Where records in the FULL OUTER JOINed tables do not match, the
result set will have NULL values for every column of the table thatacks
a matching row.

For those records that do match, a single row will be produced in the
result set (containing fields populated from both tables).

» Not all SQL implementations have implemented the new
syntax of joined tables.

» In some systems, a different syntax was used to specify outer
joins by using the comparison operators +=,=+,and +=+ for
left, right, and full outer join, respectively

» For example, this syntax is available in Oracle.To specify the
left outer join in Q8B using this syntax, we could write the
query Q8C as follows:

Q8C: SELECT E.Lhame, S.Lname
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.Super ssn += S.Ssn;

https:vtucodein page26

Database Management System [BCS403]

MULTIWAY JOIN
It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined
table. This allows the specification of the join of three or more tables as a single joined table, which
is called a multiway join.
Example: For every project located in ‘Stafford’, list the project number, the controlling department
number, and the department manager’s last name,address, and birth date.

SELECT Pnumber, Dnum, Lname, Address, Bdate

FROM ((PROJECT JOIN DEPARTMENT ON Dnum=Dnumber)

JOIN EMPLOYEE ON Mgr_ssn=Ssn)

WHERE Plocation="Stafford’;

1.1.7 Aggregate Functions in SQL

Aggregate functions are used to summarize information from multiple tuples into a single-tuple
summary. A number of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The
COUNT function returns the number of tuples or values as specified in a query. The functions SUM,
MAX, MIN, and AVG can be applied to a set or multiset of numeric values and return, respectively,
the sum, maximum value, minimum value, and average (mean) of those values. These functions
can be used in the SELECTclause or in a HAVING clause (which we introduce later). The functions
MAX and MIN can also be used with attributes that have honnumeric domains if the domain values

have a total ordering among one another.

Examples
1. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the
average salary.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM EMPLOYEE;

2. Find the sum of the salaries of all employees of the ‘Research’ department, as well as the
maximum salary, the minimum salary, and the average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM (EMPLOYEE JOIN DEPARTMENT ON Dno=Dnumber)

WHERE Dname=‘Research’;

3. Count the number of distinct salary values in the database.
SELECT COUNT (DISTINCT Salary)
FROM EMPLOYEE;

https:/ivtucodein page27

Database Management System [BCS403]

4. To retrieve the names of all employees who have two or more dependents
SELECT Lname, Fname
FROM EMPLOYEE
WHERE (SELECT COUNT (*)
FROM DEPENDENT
WHERE Ssn=Essn) >= 2;

1.1.8 Grouping: The GROUP BY and HAVING Clauses
Grouping is used to create subgroups of tuples before summarization. For example, we may want
to find the average salary of employees in each department or the number of employees who work
on each project. In these cases we need to partition the relation into.non overlapping subsets (or
groups) of tuples. Each group (partition) will consist of the tuples that have the same value of some
attribute(s), called the grouping attribute(s).
SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping
attributes, which should also appear in the SELECT clause, so that the value resulting from applying
each aggregate function to a group of tuples appears along with the value of the grouping
attribute(s).
Example: For each department, retrieve the department number, the number of employees in the
department, and their average salary.

SELECT Dno, COUNT (*), AVG (Salary)

FROM EMPLOYEE

GROUP BY Dno;

Fname |Minit' | Lname & ***| Salary | Super_ssn Dno L Dno |Count (*) | Avg (Salary)
John B | Smith ‘ 123456789 30000 | 333445555 5 > 5 4 33250
Franklin | T Wong | 333445555 40000 | 888665555 5 — 4 3 31000
Ramesh | K | Narayan 666884444 38000 | 333445555 5 —- 1 55000
Joyce A | English = 453453453 |---| 25000 | 333445555 5 Result of Q24

Alicia J [Zelaya 999887777 25000 | 987654321 4

Jennifer | S | Wallace 987654321 43000 | 888665555 4

Ahmad V | Jabbar | 987987087 25000 | 987654321 4

James | E | Bong | 888666665 | | 65000 | NULL 1| |—

C;oubl'g Eﬂl’r"LOYEE tuplesby the vatuer of’Dnd

If NULLs exist in the grouping attribute, then a separate group is created for all tuples with a NULL
value in the grouping attribute. For example, if the EMPLOYEE table had some tuples that had
NULL for the grouping attribute Dno, there would be a separate group for those tuples in the result

of query

https:/ivtucode.in page 28

Database Management System [BCS403]

Example: For each project, retrieve the project number, the project name, and the number of
employees who work on that project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname;
Above query shows how we can use a join condition in conjunction with GROUP BY. In this case,
the grouping and functions are applied after the joining of the two relations.

HAVING provides a condition on the summary information regarding the group of tuples associated
with each value of the grouping attributes. Only the groups that satisfy the condition are retrieved in

the result of the query.

Example: For each project on which more than two employees work, retrieve the project number,
the project name, and the number of employees who work on the project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE Pnumber=Pno

GROUP BY Pnumber, Pname

HAVING COUNT (*) > 2;

Brac Poumber |---| Essn Pro Hours —— These groups are not selected by
ProductX 1 123456789 i 395 - the HAVING condition of Q26.
ProductX 1 453453453 | 1 20.0
ProduetY 2 123406789 | 2 75 ||
ProductY 2 453453453 2 20,0
ProductY 2 | 333445555 | 2 10.0
ProductZ 3 666884444 | 3 40.0 N
ProductZ 3 333445555 3 10.0 _+
Computerization 10 ...| 333448985 10 | 100 |
Computerization 10 999887777 | 10 10.0
Computerization 10 987987987 | 10 350 |
Reorganization 20 333445558 | 20 100 ||
Reorganization 20 287654321 20 15.0
Reorganization | 20 888665555 | 20 | NULL | |

| Newberefits 30 087087987 | 30 50 |
Newbenefits 30 887654321 | 30 20,0
Newberefits | 30 000887777 | 30 | 300

After applying the YWHERE clause but before applying HAVING

https:/ivtucode.in page 29

Database Management System [BCS403]

Pname | Pnumber Essn | Pno | Hours Prame Count {*)
ProductY | 2 123456789 | 2 75 —™ | Producly 3
ProductY B 453453453 | 2 20.0 J|--- Computerzation 3

 ProductY |2 333445555 | 2 10.0 ‘ Reorganization | 3
Computerization | i0 3353445555 | 10 100 | ’_-:- Newhansfits a
Computerization | 10 --| 999887777 | 10 | 10.0 | |—|| ResultoiQ26

~Gomputerization | 10 “Se7earas7 | 10 | 350 Fhumiber ot shamrd
Reorganization | 20 333445555 | 20 10.0
Reorganization | 20 987654321 | 20 15.0
Reorganization | 20 888665565 i 20 NULL
Newbenefits | 30 987987287 | 30 5.0
Newbenefits | 30 087654321 | 30 20.0 =
 Newbenefits | 30 | | 999887777 | 30 | 30.0

Aftar applying the HAVING clauss condition

Example: For each project, retrieve the project number, the project name, and the number of
employees from department 5 who work on the project.

SELECT Pnumber, Pname, COUNT (*)

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE Pnumber=Pno AND Ssn=Essn AND Dno=5

GROUP BY Pnumber, Pname;

Example: For each department that has more than five employees, retrieve the department number
and the number of its employees who are making more than $40,000.

SELECT Dnumber, COUNT (*)

FROM DEPARTMENT, EMPLOYEE

WHERE Dnumber=Dno AND Salary>40000 AND

(SELECT Dno

FROM EMPLOYEE

GROUP BY Dno

HAVING COUNT (*) > 5);

1.1.9 Discussion and Summary of SQL Queries

A retrieval query in SQL can consist of up to six clauses, but only the first two—SELECT and
FROM—are mandatory.The query can span several lines, and is ended by a semicolon. Query
terms are separated by spaces, and parentheses can be used to group relevant parts of a query in
the standard way.The clauses are specified in the following order, with the clauses between square

brackets [...] being optional:

https:/Ilvtucode.in page 30

- Database Management System [BCS403]

SELECT <attribute and function list>
FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]

[ORDER BY <attribute list> 1;

The SELECT clause lists the attributes or functions to be retrieved. The FROM clause specifies all
relations (tables) needed in the query, including joined relations, but not those in nested queries.
The WHERE clause specifies the conditions for selecting the tuples from these relations, including
join conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a
condition on the groups being selected rather than on the individual tuples. Finally, ORDER BY

specifies an order for displaying the result of a query.

A query is evaluated conceptually by first applying the FROM clause to identify all tables involved in
the query or to materialize any joined tables followed by the WHERE clause to select and join
tuples, and then by GROUP BY and HAVING. ORDER BY is applied at the end to sort the query
result Each DBMS has special query optimization routines to decide on an execution plan that is

efficient to execute

In general, there are numerous ways to specify the same query in SQL.This flexibility in specifying
queries has advantages and disadvantages.
= The main advantage is that users can choose the technique with which they are most
comfortable when specifying a query. For example, many queries may be specified with join
conditions in the WHERE clause, or by using joined relations in the FROM clause, or with
some form of nested queries and the IN comparison. From the programmer’s and the
system’s point of view regarding query optimization, it is generally preferable to write a query
with as little nesting and implied ordering as possible.
= The disadvantage of having numerous ways of specifying the same query is that this may
confuse the user, who may not know which technique to use to specify particular types of
queries. Another problem is that it may be more efficient to execute a query specified in one
way than the same query specified in an alternative way

https:/ivtucode.in page 31

Database Management System [BCS403]

1.2 Specifying Constraints as Assertions and Actions as Triggers

1.2.1 Specifying General Constraints as Assertions in SQL

Assertions are used to specify additional types of constraints outside scope of built-in relational
model constraints. In SQL, users can specify general constraints via declarative assertions, using
the CREATE ASSERTION statement of the DDL.Each assertion is given a constraint name and is

specified via a condition similar to the WHERE clause of an SQL query.

General form :
CREATE ASSERTION <Name_of_assertion> CHECK (<cond>)

For the assertion to be satisfied, the condition specified after CHECK clause must return true.

For example, to specify the constraint that the salary of an employee must not be greater than the
salary of the manager of the department that the employee works for in SQL, we can write the
following assertion:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D WHERE E.Salary>M.Salary AND

E.Dno=D.Dnumber AND D.Mgr_ssn=M.Ssn));

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK, which is followed
by a condition in parentheses that must hold true on every database state for the assertion to be
satisfied. The constraint name can be used later to refer to the constraint or to modify or drop it. Any
WHERE clause condition can be used, but many constraints can be specified using the EXISTS and

NOT EXISTS style of SQL conditions.

By including this query inside a NOT EXISTS clause, the assertion will specify that the result of this
query must be empty so that the condition will always be TRUE. Thus, the assertion is violated if the
result of the query is not empty
Example: consider the bank database with the following tables

e branch (branch_ _name. branch_city, assets)

e customer (customer_name, customer_street, customer _city)

e account (account number, branch_name, balance)

e Joan (loan_number, branch_name, amount)

e depositor (customer_name, account_number)

e borrower (customer_name. loan_number)

https:/ivtucode.in page 32

Database Management System [BCS403]

1. Write an assertion to specify the constraint that the Sum of loans taken by a customer does not
exceed 100,000
CREATE ASSERTION sumofloans
CHECK (100000> = ALL
SELECT customer_name,sum(amount)
FROM borrower b, loan |
WHERE b.loan_number=l.loan_number
GROUP BY customer_name);
2. Write an assertion to specify the constraint that the Number of accounts for each customer in a

given branch is at most two

CREATE ASSERTION NumAccounts

CHECK (2>=ALL

SELECT customer_name,branch_name, count(*)
FROM account A, depositor D

WHERE A.account_number = D.account _number
GROUP BY customer_name, branch_name);

1.2.2 Introduction to Triggers in SQL
A trigger is a procedure that runs-automatically when a certain event occurs in the DBMS. In many
cases it is convenient to specify the type of action to be taken when certain events occur and when
certain conditions are satisfied. The CREATE TRIGGER statement is used to implement such
actions in SQL.
General form:
CREATE TRIGGER <name>
BEFORE | AFTER | <events>
FOR EACH ROW |FOR EACH STATEMENT
WHEN (<condition>)
<action>
A trigger has three components
1. Event: When this event happens, the trigger is activated
e Three event types : Insert, Update, Delete
e Two triggering times: Before the event

After the event

https:/Ilvtucode.in page 33

Database Management System [BCS403]

2. Condition (optional): If the condition is true, the trigger executes, otherwise
skipped
3. Action: The actions performed by the trigger

When the Event occurs and Condition is true, execute the Action

Create Trigger ABC Create Trigger XYZ
Before Insert On After Update On Students
Students

; -

This trigger is activated when an insert statement This triggefis activated whew'an undate

is issued, but before the new record is inserted —Zt)iimggt PR QR °r the update is

Does the trigger execute for each updated or deleted record, or once for the entire
statement ?. We define such granularity as follows:

Create Trigger <name> This is the event
Before| After Insert| Update| Delete

For Each Row | For Each Statement \
This is the granularity

Create Trigger XYZ Create Trigger XYZ

After Update ON <tablename> Before Delete ON <tablename>

For each statement For each row
This trigger is activated once (per UPDATE This trigger is activated before deleting each
statement) after all records are updated record

https:/ivtucode.in page 34

Database Management System [BCS403]

In the action, you may want to reference:
* The new values of inserted or updated records (:new)
* The old values of deleted or updated records (:old)

Create Trigger EmpSal
After Insert or Update On Employee Inside “When”, the “new” and

For Each Row / “old” should not have “”
When (new.salary >150,000)

Begin
Trigger body if (:new.salary < 100,000) ...
End;

Inside the trigger body, they
should have “”

Examples:

1) If the employee salary increased by more than 10%, then increment the rank field by 1.

In the case of Update event only, we can specify which columns

Create Trigger EmpSal,
Before Update Of salary On Employee
For Each Row
Begin
IF (:new.salary > (:old.salary.1.1)) Then
:new.rank :=:old.rank + 1;
End IF;
End;
/

We changed the new value of rank field

The assignment operator has “”

2) Keep the bonus attribute in Employee table always 3% of the salary attribute

Create Trigger EmpBonus //—- Indicate two events at the same time
Before Insert Or Update On Employee

For Each Row
Begin
:new.bonus := :new.salary * 0.03;

End; \
The bonus value is always computed

automatically

https:/Ilvtucode.in page 35

Database Management System [BCS403]

3. Suppose we want to check whenever an employee’s salary is greater than the salary of his or
her direct supervisor in the COMPANY database
= Several events can trigger this rule:
* inserting a new employee record
« changing an employee’s salary or
« changing an employee’s supervisor

= Suppose that the action to take would be to call an external stored procedure
SALARY_VIOLATION which will notify the supervisor

CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
ON EMPLOYEE

FOR EACH ROW

WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN))
INFORM_SUPERVISOR(NEW.Supervisor_ssn,NEW.Ssn);

= The trigger is given the name SALARY_VIOLATION, which can be used to remove or
deactivate the trigger later

= |n this example the events are: inserting a new employee record, changing an employee’s
salary, or changing an employee’s supervisor

= The action is to execute the stored procedure INFORM_SUPERVISOR

Triggers can be used in various applications, such as maintaining database consistency, monitoring

database updates.

Assertions vs. Triggers
= Assertions do not modify the data, they only check certain conditions. Triggers are more
powerful because the can check conditions and also modify the data
= Assertions are not linked to specific tables in the database and not linked to specific events.
Triggers are linked to specific tables and specific events
= All assertions can be implemented as triggers (one or more). Not all triggers can be

implemented as assertions

https:/Ilvtucode.in page 36

Database Management System [BCS403]

Example: Trigger vs. Assertion

All new customers opening an account must have opening balance >= $100. However, once the
account is opened their balance can fall below that amount.

We need triggers, assertions cannot be used Trigger Event: Before Insert

Create Trigger OpeningBal

Before Insert On Customer

For Each Row

Begin
IF (:new.balance is null or :new.balance < 100) Then
RAISE_APPLICATION_ERROR(-20004, 'Balance should be >= $100');
End IF;

End;

1.3 Views (Virtual Tables) in SQL
1.3.1 Concept of a View in SQL

A view in SQL terminology is a single table that is derived from other tables. other tables can be
base tables or previously defined views. A view does not necessarily exist in physical form; it is
considered to be a virtual table, in contrast to base tables, whose tuples are always physically
stored in the database. This limits the possible update operations that can be applied to views, but
it does not provide any limitations on querying a view. We can think of a view as a way of specifying
a table that we need to reference frequently, even though it may not exist physically.

For example, referring to the COMPANY database, we may frequently issue queries that retrieve
the employee name and the project names that the employee works on. Rather than having to
specify the join of the three tables EMPLOYEE,WORKS_ON, and PROJECT every time we issue
this query, we can define a view that is specified as the result of these joins. Then we can issue
queries on the view, which are specified as single table retrievals rather than as retrievals involving
two joins on three tables. We call the EMPLOYEE,WORKS_ON, and PROJECT tables the defining
tables of the view.

https:/ivtucode.in page 37

Database Management System [BCS403]

1.3.2 Specification of Views in SQL

In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual) table name
(or view name), a list of attribute names, and a query to specify the contents of the view. If none of
the view attributes results from applying functions or arithmetic operations, we do not have to
specify new attribute names for the view, since they would be the same as the names of the

attributes of the defining tables in the default case.

Example 1:

CREATE VIEW WORKS_ON1
AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber;
Example 2:
CREATE VIEW DEPT _INFO(Dept_name, No _of emps, Total sal)
AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber=Dno
GROUP BY Dname;

In example 1, we did not specify any new attribute names for the view WORKS_ONH1. In this
case,WORKS_ONT1 inherits the names of the view attributes from the defining tables EMPLOYEE,
PROJECT, and WORKS_ON.

Example 2 explicitly specifies new attribute names for the view DEPT_INFO, using a one-to-one
correspondence between the attributes specified in the CREATE VIEW clause and those specified
in the SELECT clause of the query that defines the view.

WORKS_ONA1

| Fname | Lname | Pnamea | Hours |

DEPT_INFO

| Dept_name | No_of emps | Total_sal |

We can now specify SQL queries on a view—or virtual table—in the same way we specify queries
involving base tables.

For example, to retrieve the last name and first name of all employees who work on the ‘ProductX’
project, we can utilize the WORKS_ON1 view and specify the query as :

https:/ivtucode.in page 38

Database Management System [BCS403]

SELECT Fname, Lname
FROM WORKS ON1
WHERE Pname='ProductX’;

The same query would require the specification of two joins if specified on the base relations
directly. one of the main advantages of a view is to simplify the specification of certain queries.
Views are also used as a security and authorization mechanism.

A view is supposed to be always up-to-date; if we modify the tuples in the base tables on which the
view is defined, the view must automatically reflect these changes. Hence, the view is not realized
or materialized at the time of view definition but rather at the time when we specify a query on the
view. It is the responsibility of the DBMS and not the user to make sure that the view is kept up-to-
date.

If we do not need a view any more, we can use the DROP VIEW command to dispose of it. For
example : DROP VIEW WORKS_ONT;

1.3.3 View Implementation, View Update and Inline Views
The problem of efficiently implementing a view for querying is complex. Two main approaches have
been suggested.
= One strategy, called query modification, involves modifying or transforming the view query
(submitted by the user) into a query on the underlying base tables. For example, the query
SELECT Fname, Lname
FROM WORKS_ON1
WHERE Pname=‘ProductX’;

would be automatically modified to the following query by the DBMS:
SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn AND Pno=Pnumber
AND Pname=‘ProductX’;

The disadvantage of this approach is that it is inefficient for views defined via complex queries that
are time-consuming to execute, especially if multiple queries are going to be applied to the same
view within a short period of time.

= The second strategy, called view materialization, involves physically creating a temporary view
table when the view is first queried and keeping that table on the assumption that other queries
on the view will follow. In this case, an efficient strategy for automatically updating the view table

when the base tables are updated must be developed in order to keep the view up-to-date.

https:/ivtucode.in page 39

Database Management System [BCS403]

Techniques using the concept of incremental update have been developed for this purpose,
where the DBMS can determine what new tuples must be inserted, deleted, or modified in a

materialized view table when a database update is applied to one of the defining base tables.

The view is generally kept as a materialized (physically stored) table as long as it is being queried. If
the view is not queried for a certain period of time, the system may then automatically remove the

physical table and recompute it from scratch when future queries reference the view.

Updating of views is complicated and can be ambiguous. In general, an update on a view defined
on a single table without any aggregate functions can be mapped to an update on the underlying
base table under certain conditions. For a view involving joins, an update operation may be mapped
to update operations on the underlying base relations in multiple ways. Hence, it is often not
possible for the DBMS to determine which of the updates is intended.

To illustrate potential problems with updating a view defined on multiple tables, consider the
WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of
‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:
UV1: UPDATEWORKS_ONT1
SET Pname = ‘ProductY’
WHERE Lname=‘Smith’ AND Fname='John’
AND Pname='ProductX’;
This query can be mapped into several updates on the base relations to give the desired update
effect on the view. In addition, some of these updates will create additional side effects that affect
the result of other queries.
For example, here are two possible updates, (a) and (b), on the base relations corresponding to the
view update operation in UV1:
(a): UPDATEWORKS_ON
SET Pno= (SELECT Pnumber
FROM PROJECT
WHERE Pname="ProductY’)
WHERE Essn IN (SELECT Ssn
FROM EMPLOYEE
WHERE Lname=‘Smith’ AND Fname='John’)
AND
Pno= (SELECT Pnumber
FROM PROJECT
WHERE Pname='ProductX’);

https:/lvtucode.in page 40

Database Management System [BCS403]

(b): UPDATEPROJECT SET Pname = ‘ProductY’
WHERE Pname = ‘ProductX’;

Update (a) relates ‘John Smith’ to the ‘ProductY” PROJECT tuple instead of the ‘ProductX’
PROJECT tuple and is the most likely desired update. However, (b) would also give the desired
update effect on the view, but it accomplishes this by changing the name of the ‘ProductX’ tuple in
the PROJECT relation to ‘ProductY’.

It is quite unlikely that the user who specified the view update UV1 wants the update to be
interpreted as in (b), since it also has the side effect of changing all the view tuples with Pname =
‘ProductX’.

Some view updates may not make much sense; for example, modifying the Total_sal attribute of the
DEPT_INFO view does not make sense because Total_sal is defined to be the sum of the individual
employee salaries. This request is shown as UV2:
UV2: UPDATEDEPT_INFO
SET Total_sal=100000
WHERE Dname=‘Research’;

A large number of updates on the underlying base relations can satisfy this view update.

Generally, a view update 'is feasible when only one possible update on the base relations can
accomplish the desired update effect on the view. Whenever an update on the view can be mapped
to more than one update on the underlying base relations, we must have a certain procedure for

choosing one of the possible updates as the most likely one.

In summary, we can make the following observations:

m A view with a single defining table is updatable if the view attributes contain the primary key of the
base relation, as well as all attributes with the NOT NULL constraint that do not have default
values specified.

m Views defined on multiple tables using joins are generally not updatable.

m Views defined using grouping and aggregate functions are not updatable.

In SQL, the clause WITH CHECK OPTION must be added at the end of the view definition if a view

is to be updated. This allows the system to check for view updatability and to plan an execution

strategy for view updates. It is also possible to define a view table in the FROM clause of an SQL

query. This is known as an in-line view. In this case, the view is defined within the query itself.

https:/ivtucode.in page 41

Database Management System [BCS403]

1.4Schema Change Statements in SQL
Schema evolution commands available in SQL can be used to alter a schema by adding or
dropping tables, attributes, constraints, and other schema elements. This can be done while the

database is operational and does not require recompilation of the database schema.

1.4.1 The DROP Command
The DROP command can be used to drop named schema elements, such as tables, domains, or
constraints. One can also drop a schema. For example, if a whole schema is no longer needed, the
DROP SCHEMA command can be used.
There are two drop behavior options: CASCADE and RESTRICT. For example, to remove the
COMPANY database schema and all its tables, domains, and other elements, the CASCADE option
is used as follows:

DROP SCHEMA COMPANY CASCADE;
If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no
elements in it; otherwise, the DROP command will not be executed. To use the RESTRICT option,

the user must first individually drop each element in the schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition can be deleted
by using the DROP TABLE command. For example, if we no longer wish to keep track of
dependents of employees in the COMPANY database, , we can get rid of the DEPENDENT relation
by issuing the following command:

DROP TABLE DEPENDENT CASCADE;
If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not
referenced in any constraints (for example, by foreign key definitions in another relation) or views
or by any other elements. With the CASCADE option, all such constraints, views, and other
elements that reference the table being dropped are also dropped automatically from the schema,
along with the table itself.
The DROP TABLE command not only deletes all the records in the table if successful, but also
removes the table definition from the catalog. If it is desired to delete only the records but to leave
the table definition for future use, then the DELETE command should be used instead of DROP
TABLE.
The DROP command can also be used to drop other types of named schema elements, such as

constraints or domains.

1.4.2 The ALTER Command

https:/Ilvtucode.in page 42

Database Management System [BCS403]

The definition of a base table or of other named schema elements can be changed by using the
ALTER command. For base tables, the possible alter table actions include adding or dropping a

column (attribute), changing a column definition, and adding or dropping table constraints.

For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base
relation in the COMPANY schema , we can use the command:
ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can
be done either by specifying a default clause or by using the UPDATE command individually on
each tuple. If no default clause is specified, the new attribute will have NULLs in all the tuples of the
relation immediately after the command is executed; hence, the NOT NULL constraint is not allowed
in this case.
To drop a column, we must choose either CASCADE or RESTRICT for drop behavior. If CASCADE
is chosen, all constraints and views that reference the column are dropped automatically from the
schema, along with the column. If RESTRICT is chosen, the command is successful only if no views
or constraints (or other schema elements) reference the column.
For example, the following command removes the attribute Address from the EMPLOYEE base
table:

ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE;

It is also possible to alter a column definition by dropping an existing default clause or by defining a
new default clause. The following examples illustrate this clause:
ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn DROP DEFAULT;

ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET DEFAULT

‘333445555,

Alter Table - Alter/Modify Column

To change the data type of a column in a table, use the following syntax:
ALTER TABLE table_name
MODIFY column_name datatype;

For example we can change the data type of the column named "DateOfBirth" from date to year in
the "Persons" table using the following SQL statement:

ALTER TABLE Persons

ALTER COLUMN DateOfBirth year;

https:/lvtucode.in page 43

Database Management System [BCS403]

Notice that the "DateOfBirth" column is now of type year and is going to hold a year in a two- or
four-digit format.

https:/Ilvtucode.in page 44

Database Management System [BCS403]

Transaction Processing

The concept of transaction provides a mechanism for describing logical units of database
processing. Transaction processing systems are systems with large databases and hundreds of
concurrent users executing database transactions. Examples:

 airline reservations

+ banking

» credit card processing,

* online retail purchasing,

» Stock markets, supermarket checkouts, and many other applications
These systems require high availability and fast response time for hundreds of concurrent
users. A transaction is typically implemented by a computer program, which includes database

commands such as retrievals, insertions, deletions, and updates.

5.1 Objectives

+» To study transaction properties

X/

+ To study creation of schedule and maintaining schedule equivalence.

X/

« To check whether the given schedule is serailizable or not.

X/

« To study protocols used for locking objects

+«» Differentiating between 2PL and Strict 2PL

5.2 Introduction to Transaction Processing

5.2.1 Single-User versus Multiuser Systems

= One criterion for classifying a database system is according to the number of users who
can use the system concurrently
Single-User versus Multiuser Systems
= ADBMSis
* single-user
- at most one user at a time can use the system
- Eg: Personal Computer System
. multiuser
- many users can use the system and hence access the database concurrently

- Eg: Airline reservation database

https:/ivtucode.in 3

Database Management System [BCS403]

= Concurrent access is possible because of Multiprogramming. Multiprogramming can
be achieved by:
* interleaved execution
+ Parallel Processing
= Multiprogramming operating systems execute some commands from one process,
then suspend that process and execute some commands from the next process, and so
on
= A process is resumed at the point where it was suspended whenever it gets its turn to
use the CPU again
= Hence, concurrent execution of processes is actually interleaved, as illustrated in

Interleaved process-
ing versus parallel
processing of con-
current transactions.

Time

Figure 21.1
o (Kb i |
B 1 i i i
e 5 | ; |

! (i : CPU,
! 0 | CPU, Figure 21.1
i i
} e
ta I'l-d.

e o
e

= Figure 21.1, shows two processes, A and B, executing concurrently in an interleaved
fashion

= |[nterleaving keeps the CPU busy when a process requires an input or output (I/O)
operation, such as reading a block from disk

= The CPU is switched to execute another process rather than remaining idle during /O
time

= |nterleaving also prevents a long process from delaying other processes.

= |f the computer system has multiple hardware processors (CPUs), parallel processing
of multiple processes is possible, as illustrated by processes C and D in Figure 21.1

= Most of the theory concerning concurrency control in databases is developed in terms of

interleaved concurrency
* In a multiuser DBMS, the stored data items are the primary resources that may be
accessed concurrently by interactive users or application programs, which are constantly

retrieving information from and modifying the database.

https:/ivtucode.in

Database Management System [BCS403]

5.2.2 Transactions, Database Items, Read and Write Operations, and DBMS

Buffers

= A Transaction an executing program that forms a logical unit of database processing
= |t includes one or more DB access operations such as insertion, deletion, modification or
retrieval operation.
= |t can be either embedded within an application program using begin transaction and
end transaction statements Or specified interactively via a high level query language
such as SQL
= Transaction which do not update database are known as read only transactions.
= Transaction which do update database are known as read write transactions.
= A database is basically represented as a collection of named data items The size of a
data item is called its granularity.
= A data item can be a database record, but it can-also be a larger unit such as a whole
disk block, or even a smaller unit such as an individual field (attribute) value of some
record in the database
= Each data item has a unique name
= Basic DB access operations that a transaction can include are:
* read_item(X): Reads a DB item named X into a program variable.
* write_item(X): Writes the value of a program variable into the DB item named X
= Executing read_item(X) include the following steps:
1. Find the address of the disk block that contains item X
2. Copy the block into a buffer in main memory
3. Copy the item X from the buffer to program variable named X.
= Executing write_item(X) include the following steps:
1. Find the address of the disk block that contains item X
2. Copy the disk block into a buffer in main memory
3. Copy item X from program variable named X into its correct location in buffer.
4. Store the updated disk block from buffer back to disk (either immediately or later).
= Decision of when to store a modified disk block is handled by recovery manager of the
DBMS in cooperation with operating system.
= A DB cache includes a number of data buffers.
= When the buffers are all occupied a buffer replacement policy is used to choose one of
the buffers to be replaced. EG: LRU

https:/lvtucode.in 5

Database Management System [BCS403]

= A transaction includes read_item and write_item operations to access and update DB.

(a) T, (b) T, Figure 21.2
: : Two sample transac-

read_item(X); read_item(X); tions. (a) Transaction
X=X-N, X=X+ M T,. (b) Transaction T,
write_item(X); write_item(X); ;
read _item{Y¥);
Y=Y+ N,
write_item(¥};

= The read-set of a transaction is the set of all items that the transaction reads
= The write-set is the set of all items that the transaction writes

= For example, the read-set of T1 in Figure 21.2 is {X, Y}and its write-set is also {X, Y}.

5.2.3 Why Concurrency Control Is Needed

= Several problems can occur when concurrent transactions execute in an uncontrolled
manner
= Example:
* We consider an Airline reservation DB
» Each records is stored for an airline flight which includes Number of reserved seats
among other information.
» Types of problems we may encounter:

1. The Lost Update Problem

2. The Temporary Update (or Dirty Read) Problem
3. The Incorrect Summary Problem

4. The Unrepeatable Read Problem

T? T1
read _item(X); read_item(X);
X=X+ M, X=X-N,;
write_item(X); write_item(X);
read_item(Y);
Y=Y+N;
write_item(Y);

https:/ivtucode.in 6

Database Management System [BCS403]

= Transaction T1
« transfers N reservations from one flight whose number of reserved seats is stored
in the database item named X to another flight whose number of reserved seats is
stored in the database item named Y.
= Transaction T2

+ reserves M seats on the first flight (X)

1. The Lost Update Problem

= occurs when two transactions that access the same DB items have their operations
interleaved in a way that makes the value of some DB item incorrect
= Suppose that transactions T1 and T2 are submitted at approximately the same time, and

suppose that their operations are interleaved as shown in Figure below

Ty s

read item(X):

X=X—N,
read item{X):
X=X+ M

Time write itemiX);

read_item(¥): ;

it m T Item X has an incorrect value because

its update by T, is fost (overwritten).

Y=¥+~N,
Y write_item(Y}

= Final value of item X'is incorrect because T2 reads the value of X before T1 changes it in
the database, and hence the updated value resulting from T1 is lost.
= For example:
X = 80 at the start (there were 80 reservations on the flight)
N =5 (T1 transfers 5 seat reservations from the flight corresponding
to X to the flight corresponding to Y)
M = 4 (T2 reserves 4 seats on X)
The final result should be X = 79.
» The interleaving of operations shown in Figure is X = 84 because the update in T1 that

removed the five seats from X was lost.

https:/Ilvtucode.in 7

Database Management System [BCS403]

2. The Temporary Update (or Dirty Read) Problem
= occurs when one transaction updates a database item and then the transaction fails for
some reason

= Meanwhile the updated item is accessed by another transaction before it is changed back

to its original value

Ty Ty

read item(X);
X=X—N
write item(X);

Time read item{X);
X=X+ M
write item(X);
Transaction T, fails and must change
read _item(¥); the value of X back to its old value;

Y meanwhile T, has read the temporary
incorract value of X

3. The Incorrect Summary Problem

« If one transaction is calculating an aggregate summary function on a number of db items
while other transactions are updating some of these items, the aggregate function may

calculate some values before they are updated and others after they are updated.

Ty LE;

sum = 0;
read_item(A);
sum = sum + A;

read_item{X);
X=X—-N,
write_item(X);
el fioml Tsyreads X after N is subtracted and reads
sum = sum + X; ;
: ; -+—— Y before N is added; a wrong summary
read_item(¥'); 2
s : is the result (off by N).
sum =sum + Y;
read_item(Y);
Y=Y+mn
write_item(¥);

https:/Ilvtucode.in

Database Management System [BCS403]

4. The Unrepeatable Read Problem

= Transaction T reads the same item twice and gets different values on each read, since
the item was modified by another transaction T" between the two reads.

= for example, if during an airline reservation transaction, a customer inquires about seat
availability on several flights

= When the customer decides on a particular flight, the transaction then reads the number
of seats on that flight a second time before completing the reservation, and it may end
up reading a different value for the item.

5.2.4 Why Recovery Is Needed

= Whenever a transaction is submitted to a DBMS for execution, the system is responsible
for making sure that either
1. All the operations in the transaction are completed successfully and their effect is
recorded permanently in the database or
2.The transaction does not have any effect on the database or any other
transactions
= |In the first case, the transaction is said to be committed, whereas in the second case,
the transaction is aborted
= |f a transaction fails after executing some of its operations but before executing all of

them, the operations already executed must be undone and have no lasting effect.

Types of failures

1. A computer failure (system crash):
* A hardware, software, or network error occurs in the computer system during
transaction execution
« Hardware crashes are usually media failures—for example, main memory failure.
2. Atransaction or system error:
« Some operation in the transaction may cause it to fail, such as integer overflow or
division by zero
» Also occur because of erroneous parameter values
3. Local errors or exception conditions detected by the transaction:
» During transaction execution, certain conditions may occur that necessitate cancellation

of the transaction

https:/Iivtucode.in 9

Database Management System [BCS403]

« For example, data for the transaction may not be found
4. Concurrency control enforcement:
* The concurrency control may decide to abort a transaction because itviolates
serializability or several transactions are in a state of deadlock
5. Disk failure:
+ Some disk blocks may lose their data because of a read or write malfunction or
because of a disk read/write head crash.
6. Physical problems and catastrophes:
» refers to an endless list of problems that includes power or air-conditioning failure, fire,
theft, overwriting disks or tapes by mistake
= Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6.
= Whenever a failure of type 1 through 4 occurs, the system must keep sufficient information to
quickly recover from the failure.
= Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they do

occur, recovery is a major task.

5.3 Transaction and System Concepts

5.3.1 Transaction States and Additional Operations

= A transaction is an atomic unit of work that should either be completed in its entirety or
not done at all. For recovery purposes, the system keeps track of start of a transaction,
termination, commit or aborts.
« BEGIN_TRANSACTION: marks the beginning of transaction execution
« READ or WRITE: specify read or write operations on the database items that are
executed as part of a transaction
« END_TRANSACTION: specifies that READ and WRITE transaction operations have
ended and marks the end of transaction execution
COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

L[]

database and will not be undone

o

ROLLBACK: signals that the transaction has ended unsuccessfully, so that any
changes or effects that the transaction may have applied to the database must be

undone

https:/Ilvtucode.in 10

Database Management System [BCS403]

READ,
WRITE

END

TRANSACTION PARTIALLY COMMIT
COMMITTED

BEGIN
TRANSACTION
JEE———

Figure: State transition diagram illustrating the states for transaction execution

A transaction goes into active state immediately after it starts execution and can

execute read and write operations.

When the transaction ends it moves to partially committed state.

At this end additional checks are done to see if the transaction can be committed or not.
If these checks are successful the transaction is said to have reached commit point and
enters committed state. All the changes are recorded permanently in the db.

A transaction can go to the failed state if one of the checks fails or if the transaction is
aborted during its active state. The transaction may then have to be rolled back to undo
the effect of its write operation.

Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

5.3.2 The System Log

Log or Journal keeps track of all transaction operations that affect the values of
database items

This information may be needed to permit recovery from transaction failures.

The log is kept on disk, so it is not affected by any type of failure except for disk or
catastrophic failure

one (or more) main memory buffers hold the last part of the log file, so that log entries
are first added to the main memory buffer

When the log buffer is filled, or when certain other conditions occur, the log buffer is

appended to the end of the log file on disk.

https:/Iivtucode.in 11

Database Management System [BCS403]

» In addition, the log is periodically backed up to archival storage (tape) to guard against
such catastrophic failures
= The following are the types of entries—called log records—that are written to the log file
and the corresponding action for each log record.
» In these entries, T refers to a unique transaction-id that is generated automatically by
the system for each transaction and that is used to identify each transaction:
1. [start_transaction, T]. Indicates that transaction T has started execution.
2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has changed
the value of database item X from old_value to new_value.
3. [read_item, T, X]. Indicates that transaction T has read the value of database item X.
4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that
its effect can be committed (recorded permanently) to the database.

5. [abort, T]. Indicates that transaction T has been aborted.

5.3.3 Commit Point of a Transaction:
= Definition a Commit Point:

— A transaction T reaches its commit point when all its operations that access the
database have been executed successfully and the effect of all the transaction
operations on the database has been recorded in the log.

— Beyond the commit point, the transaction is said to be committed, and its effect is
assumed to be permanently recorded in the database.

— The transaction then writes an entry [commit, T] into the log.

* Roll Back of transactions:
— Needed for transactions that have a [start_transaction,T] entry into the log but no
commit entry [commit,T] into the log.
5.3.4 DBMS specific buffer Replacement policies
Domain Separation(DS) method
* DBMS cache is divided into separate domains, each handles one type of disk pages
and replacements within each domain are handled via basic LRU page replacement.
* LRU is a static algorithm and does not adopts to dynamically changing loads because
the number of available buffers for each domain is predetermined.
* Group LRU adds dynamically load balancing feature since it gives each domain a

priority and selects pages from lower priority level domain first for replacement.

https:/ivtucode.in 12

Database Management System [BCS403]

Hot Set Method:
= This is useful in queries that have to scan a set of pages repeatedly.
= The hot set method determines for each db processing algorithm the set of disk pages
that will be accessed repeatedly and it does not replace them until their processing is
completed.
The DBMIN method:
= uses a model known as QLSM (Query Locality set model), which predetermines the
pattern of page references for each algorithm for a particular db operation
= Depending on the type of access method, the file characteristics, and the algorithm
used the QLSM will estimate the number of main memory buffers needed for each file

involved in the operation.

5.4 Desirable Properties of Transactions

= Transactions should possess several properties, often called the ACID properties
A Atomicity: a transaction is an atomic unit of processing and it is either performed

entirely or not at all.
C Consistency Preservation: a transaction should be consistency preserving that is it
must take the database from one consistent state to another.
| Isolation/Independence: A transaction should appear as though it is being executed
in isolation from other transactions, even though many transactions are executed
concurrently.
D Durability (or Permanency): if a transaction changes the database and is committed,
the changes must never be lost because of any failure.
= The atomicity property requires that we execute a transaction to completion. It is the
responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity.
= The preservation of consistency is generally considered to be the responsibility of the
programmers who write the database programs or of the DBMS module that enforces
integrity constraints.
= The isolation property is enforced by the concurrency control subsystem of the DBMS.
If every transaction does not make its updates (write operations) visible to other
transactions until it is committed, one form of isolation is enforced that solves the
temporary update problem and eliminates cascading rollbacks

= Durability is the responsibility of recovery subsystem.

https:/lvtucode.in 13

Database Management System [BCS403]

5.5 Characterizing Schedules Based on Recoverability

= schedule (or history): the order of execution of operations from all the various
transactions
= Schedules (Histories) of Transactions: A schedule S of n transactions T4, To,....... Th
is a sequential ordering of the operations of the n transactions.
— The transactions are interleaved
= Two operations in a schedule are said to conflict if they satisfy all three of the following
conditions:
(1) they belong to different transactions;
(2) they access the same item X; and
(3) at least one of the operations is a write_item(X)
= Conflicting operations:
* r1(X) conflicts with wy(X) } Read write conflict
* r2(X) conflicts with w1(X)
+ wy(X) conflicts with wa(X) Write conflict
* r1(X) do not conflicts with ra(X)

Schedules classified on recoverability:

= Recoverable schedule:
— One where no transaction needs to be rolled back.
— A schedule S is recoverable if no transaction T in S commits until all transactions
T’ that have written an item that T reads have committed.
— Example:
* Sc. n(X), wi(X); ra(X); r(Y); wa(X); c2; as;
s Sa: n(X); wi(X); r2(X); r(Y); wa(X); wi(Y); ¢1; c2;

= Cascadeless schedule:
— One where every transaction reads only the items that are written by committed
transactions.
= Schedules requiring cascaded rollback:

— A schedule in which uncommitted transactions that read an item from a failed
transaction must be rolled back.
= Strict Schedules:
— A schedule in which a transaction can neither read or write an item X until the

last transaction that wrote X has committed.

https:/Ilvtucode.in 14

Database Management System [BCS403]

5.6 Characterizing Schedules Based on Serializability

= schedules that are always considered to be correct when concurrent transactions are
executing are known as serializable schedules

= Suppose that two users—for example, two airline reservations agents—submit to the
DBMS transactions T1 and T2 at approximately the same time. If no interleaving of
operations is permitted, there are only two possible outcomes:
1. Execute all the operations of transaction T1 (in sequence) followed by all the

operations of transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the

operations of transaction 71 (in sequence).

Figure 21.5

Examples of serial and nonserial schedules involving transactions Ty and Tn. (a)
Senal schedule A: T, followed by T,. (b) Serial schedule B: 7, Tollowed by. 7.
(c) Two nonserial schedules C and D with interleaving of operations.

@ T, T ®) T, T
read_itemi{X); read_item{X);
X=X-N; X=X+ M
write item{X); write_item(X);
] read_item({Y); read_item(X);
Time Time = ¥
Y =Y¥Y1rN: X=X—-N;
write_item{¥); write_item({X);
read item(X); read item{¥');
X=X+ M, Y=V¥Y+N,
write_item(X); Y| wrte item(Y);
Schedule A Schedule B
(c) T, = T T
read_item(X); read_item{X);
X=X-MN; . ! X=X-MN;
f?f;?imé_f); write_item(X);
Tiries write_itemi(X); I Time read_itemi(X);

read_item(¥);

Y=Y+ N
write_itemn(Y):

write_iterm(X);

Schedule C

read_item(¥);
Y=rY+N
write_item(Y);

X=X+ M
write_itemi{X);

Schedule D

https:/Ilvtucode.in

15

Database Management System [BCS403]

= Serial schedule:
— A schedule S is serial if, for every transaction T participating in the schedule, all
the operations of T are executed consecutively in the schedule.
+ Otherwise, the schedule is called nonserial schedule.
= Serializable schedule:
— A schedule S is serializable if it is equivalent to some serial schedule of the same
n transactions.
= Result equivalent:
— Two schedules are called result equivalent if they produce the same final state of
the database.
= Conflict equivalent:
— Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both schedules.
= Conflict serializable:
— A schedule S is said to be conflict serializable if it is conflict equivalent to some
serial schedule S’.

= Being serializable is not the same as being serial
= Being serializable implies that the schedule is a correct schedule.
— It will leave the database in a consistent state.
— The interleaving is appropriate and will result in a state as if the transactions
were serially executed, yet will achieve efficiency due to concurrent execution.

5.6.1 Testing conflict serializability of a Schedule S

For each transaction Ti participating in schedule S,create a node labeled Ti in the
precedence graph.

For each case in S where Tj executes a read_item(X) after Ti executes a write_item(X),
create an edge (Ti->Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a read_item (X)
,create an edge (Ti—=>Tj) in the precedence graph.

For each case in S where Tj executes a write_item(X) after Ti executes a write_item(X),
create an edge (Ti—>Tj) in the precedence graph.

The schedule S is serializable if and only if the precedence graph has no cycles.

https:/lvtucode.in 16

Database Management System [BCS403]

O (%)
e
(© X

Fig: Constructing the precedence graphs for schedules A and D from fig 21.5 to test for conflict

serializability.

(a) Precedence graph for serial schedule A.

(b) Precedence graph for serial schedule B.

(c) Precedence graph for schedule C (not serializable).

(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

= Another example of serializability testing. (a) The READ and WRITE operations of three
transactions T4, T2, and Ts.

transaction T,

transaction 7,

transaction T,

read_item (X);
write_item (X);
read_item (Y);
write_item (Y);

read_item (Z);
read_item (Y);
write_item (Y);
read_item (X);
write_item (X);

read_item (Y);
read_item (Z);

write_item (Y);

write_item (Z);

https:/ivtucode.in

17

Time

©

Time

transaction T,

transaction 7,

transaction 75

read_item (X);
write_item (X);

read_item (Y);

read_item (Z);
read_item (Y);
write_item (Y);

read_item (X);

read_item (Y);
read_item (Z2);

write_item (Y);
write_item (Z2);

write_item (Y); write_item (X);
Schedule E
transaction T, transaction 75 transaction 73
read_item (Y);
read_item (Z);
read_item (X);
write_item (X); write_item (Y);
write_item (Z);
read_item (Z);
read_item (Y);
write_item (Y); read_item (Y);
write_item (Y);
read_item (X);
write_item (X);
Schedule F

Database Management System [BCS403]

https:/ivtucode.in

18

Database Management System [BCS403]

= Precedence graph for schedule E

Equivalent serial schedules

None

Reason

cycle X(7, =T\ YT, 1)
cycle X(Ty =+ T,), YZ(T, = T), V(T3 7))

= Precedence graph for schedule F

Equivalent serial schedules

i — T, —» 7T,

5.7 Transaction Support in SQL

= The basic definition of an SQL transaction is, it is a logical unit of work and is guaranteed

to be atomic

A single SQL statement is always considered to be atomic—either it completes

execution without an error or it fails and leaves the database unchanged

= With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is
done implicitly when particular SQL statements are encountered

= Every transaction must have an explicit end statement, which is either a COMMIT or a
ROLLBACK

= Every transaction has certain characteristics attributed to it and are specified by a SET

TRANSACTION statement in SQL

https:/Iivtucode.in 19

Database Management System [BCS403]

= The characteristics are :
* The access mode
- can be specified as READ ONLY or READ WRITE
- The default is READ WRITE
- A mode of READ WRITE allows select, update, insert, delete, and create
commands to be executed
- A mode of READ ONLY, as the name implies, is simply for data retrieval.
+ The diagnostic area size
- DIAGNOSTIC SIZE n, specifies an integer value n, which indicates the
number of conditions that can be held simultaneously in the
diagnostic area
- These conditions supply feedback information (errors or exceptions) to the
user or program on the n most recently executed SQL statement

* The isolation level
- specified using the statement ISOLATION LEVEL <isolation>, where the value for

<isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, or SERIALIZABLE
- The default isolation level is SERIALIZABLE
- The use of the term SERIALIZABLE here is based on not allowing violations that
cause dirty read, unrepeatable read, and phantoms
- If a transaction executes at a lower isolation level than SERIALIZABLE, then one
or more of the following three violations may occur:

1. Dirty read. A transaction 71 may read the update of a transaction T2, which
has not yet committed. If T2 fails and is aborted, then T1 would have read a
value that does not exist and is incorrect.

2. Nonrepeatable read. A transaction 71 may read a given value from a table. If
another transaction T2 later updates that value and T1 reads that value again,
T1 will see a different value.

3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps
based on some condition specified in the SQL WHERE-clause. Now suppose
that a transaction T2 inserts a new row that also satisfies the WHERE-clause
condition used in T1, into the table used by T1. If T1 is repeated, then T1 will

see a phantom, a row that previously did not exist.

https:/ivtucode.in 20

Database Management System [BCS403]

Table 21.1 Possible Violations Based on |solation Levels as Defined in SOL

Type of Violation

Isolation Level Dirty Read Nonrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

EXEC 50QL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTIC SIZE 5
ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, SsSn, Dno, Salary)
VALUES ('Robert', 'smith', '991004321', 2, 35000);
EXEC S5QL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 27
EXEC SQL COMMIT;
GOTC THE END;
UNDO: EXEC 50QL ROLLBACK;
THE END: ... ;

= The transaction consists of first inserting a new row in the EMPLOYEE table and then
updating the salary of all employees who work in department 2

= [f an error occurs on any of the SQL statements, the entire transaction is rolled back

= This implies that any updated salary (by this transaction) would be restored to its

previous value and that the newly inserted row would be removed.

https:/Ilvtucode.in 21

