Module 5

Chapter 1: Concurrency Control in Databases

5.0 Introduction to Concurrency Control
5.1 Two-Phase Locking Techniques for Concurrency Control
5.1.1 Types of Locks and System Lock Tables
5.1.2 Guaranteeing Serializability by Two-Phase Locking
5.2 Concurrency Control Based on Timestamp Ordering
5.2.1 Timestamps
5.2.2 The Timestamp Ordering Algorithm
5.3 Multiversion Concurrency Control Techniques
5.3.1 Multiversion Technique Based on Timestamp Ordering
5.3.2 Multiversion Two-Phase Locking Using Certify Locks
5.4 Validation (Optimistic) Concurrency Control Techniques
5.5 Granularity of Data Items and Multiple Granularity Locking
5.5.1 Granularity Level Considerations for Locking
5.5.2 Multiple Granularity Level Locking

Dr Kumaresh S Assoc Prof CSE(AIML)



Database Management System [BCS403]

Chapter 1: Concurrency Control in Databases

5.0 Introduction to Concurrency Control

» Purpose of Concurrency Control

— To enforce Isolation (through mutual exclusion) among conflicting transactions.
— To preserve database consistency through consistency preserving execution of
transactions.

— Toresolve read-write and write-write conflicts.

+ Example:
— In concurrent execution environment if T1 conflicts with T2 over a data item A, then
the existing concurrency control decides if T1 or T2 should get the A and if the other

transaction is rolled-back or waits.
5.1 Two-Phase Locking Techniques for Concurrency Control

= The concept of locking data items is one of the main techniques used for controlling the
concurrent execution of transactions.

= A lock is a variable associated with a data item in the database. Generally there is a lock
for each data item in the database.

= A lock describes the status of the data item with respect to possible operations that can be
applied to that item.

= |t is used for synchronizing the access by concurrent transactions to the database items.

= A transaction locks an object before using it

= When an object is locked by another transaction, the requesting transaction must wait

5.1.1 Types of Locks and System Lock Tables

1. Binary Locks

* Abinary lock can have two states or values: locked and unlocked (or 1
and 0).

= |f the value of the lock on X is 1, item X cannot be accessed by a database
operation that requests the item

Dr Kumaresh S Assoc Prof CSE(AIML) 22



Database Management System [BCS403]

If the value of the lock on X is 0, the item can be accessed when
requested, and the lock value is changed to 1

We refer to the current value (or state) of the lock associated with item X
as lock(X).

Two operations, lock_item and unlock_item, are used with binary
locking.

A transaction requests access to an item X by first issuing a lock_item(X)
operation

If LOCK(X) = 1, the transaction is forced to wait.

If LOCK(X) =0, itis setto 1 (the transaction locks the item) and the
transaction is allowed to access item X

When the transaction is through using the item, it issues an
unlock_item(X) operation, which sets LOCK(X) back to O (unlocks the
item) so that X may be accessed by other transactions

Hence, a binary lock enforces mutual exclusion on the data item.

lock_item(X):
B: if LOCK(X) = 0 (* item is unlocked *)
then LOCK(X) <1 (* lock the item *)
else
begin
wait (until LOCK(X) =0
and the lock manager wakes up the transaction);
gotoB

end;

unlock_item(X):

LOCK(X) < 0O; (* unlock the item *)

if any transactions are waiting

then wakeup one of the waiting transactions ;

Fig: 2.1.1 Lock and unlock operations for binary licks.

Dr Kumaresh S Assoc Prof CSE(AIML)

22



Database Management System

The lock_item and unlock_item operations must be implemented as indivisible units that
is, no interleaving should be allowed once a lock or unlock operation is started until the
operation terminates or the transaction waits
The wait command within the lock_item(X) operation is usually implemented by putting
the transaction in a waiting queue for item X until X is unlocked and the transaction can
be granted access to it
Other transactions that also want to access X are placed in the same queue.Hence, the
wait command is considered to be outside the lock_item operation.
It is quite simple to implement a binary lock; all that is needed is a binary-valued
variable, LOCK, associated with each data item X in the database
In its simplest form, each lock can be a record with three fields: <Data item_name,
LOCK, Locking_transaction> plus a queue for transactions that are waiting to access the
item
If the simple binary locking scheme described here is used, every transaction must obey
the following rules:
1. A transaction T must issue the operation lock item(X) before any
read_item(X) or write_item(X) operations are performed in T.
2. A transaction T must issue the operation unlock item(X) after all
read_item(X) and write_item(X) operations are completed in T.
3. A transaction T will not issue a lock_item(X) operation if it already holds the lock
on item X.
4. A transaction T will not issue an unlock_item(X) operation unless it already holds
the lock on item X.

Shared/Exclusive (or Read/Write) Locks

binary locking scheme is too restrictive for database items because at most, one
transaction can hold a lock on a given item

should allow several transactions to access the same item X if they all access X for
reading purposes only

if a transaction is to write an item X, it must have exclusive access to X

For this purpose, a different type of lock called a multiple-mode lock is used

In this scheme —called shared/exclusive or read/write locks —there are three locking

operations: read_lock(X), write_lock(X), and unlock(X).

Dr Kumaresh S Assoc Prof CSE(AIML) 24



Database Management System

= Aread-locked item is also called share-locked because other transactions are allowed
to read the item, whereas a write-locked item is called exclusive-locked because a
single transaction exclusively holds the lock on the item
= Method to implement read/write lock is to
- keep track of the number of transactions that hold a shared (read) lock
on an item in the lock table
- Each record in the lock table will have four fields:
<Data_item_name, LOCK, No_of_reads, Locking_transaction(s)>.
= |f LOCK(X)=write-locked, the value of locking_transaction(s) is a single transaction that
holds the exclusive (write) lock on X
= |f LOCK(X)=read-locked, the value of locking transaction(s) is a list of one or more

transactions that hold the shared (read) lock on X.

read lock(X):
B: if LOCK(X) = “unlocked"”
thenbegin LOCK(X) ¢ “read-locked”;
no_of _reads(X) ¢ 1
end
else if LOCK(X) = “read-locked"
then no_of reads(X) ¢~ no_of reads(X) + 1
else begin
wait (until LOCK(X) = “unlocked"
and the lock manager wakes up the transaction);
gotoB
end;
write lock(X):
B: if LOCK(X) = “unlocked”
then LOCK(X) ¢ “write-locked”
else begin
wait (until LOCK(X) = “unlocked”
and the lock manager wakes up the transaction);
gotoB
end;

Dr Kumaresh S Assoc Prof CSE(AIML) 25



Database Management System

unlock (X):
if LOCK(X) = “write-locked”
then begin LOCK(X) ¢ “unlocked”;
wakeup one of the waiting transactions, if any
end
else it LOCK(X) = “read-locked"
thenbegin

no_of reads(X) ¢« no_of reads(X) —1;
if no_of _reads(X) =0
then begin LOCK(X) = “unlocked";

wakeup one of the waiting transactions, if any
end
end;

= When we use the shared/exclusive locking scheme, the system must enforce the following
rules:

1. Atransaction T must issue the operation read_lock(X) or write_lock(X) before any
read_item(X) operation is performed in T.

2. Atransaction T must issue the operation write_lock(X) before any write_item(X)
operation is performed in T.

3 A transaction T must issue the operation unlock(X) after all read_item(X) and
write_item(X) operations are completed in T.3

4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared)
lock or a write (exclusive) lock on item X.

Conversion of Locks

= Atransaction that already holds a lock on item X is allowed under certain conditions to
convert the lock from one locked state to another

For example, it is possible for a transaction T to issue a read_lock(X) and then later to
upgrade the lock by issuing a write_lock(X) operation
- If T is the only transaction holding a read lock on X at the time it issues

the write_lock(X) operation, the lock can be upgraded;otherwise, the
transaction must wait

5.1.2 Guaranteeing Serializability by Two-Phase Locking

Dr Kumaresh S Assoc Prof CSE(AIML) 26



Database Management System [21CS53]

A transaction is said to follow the two-phase locking protocol if all locking operations

(read_lock, write_lock) precede the first unlock operation in the transaction

Such a transaction can be divided into two phases:

* Expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released

* Shrinking (second) phase, during which existing locks can be released but no

new locks can be acquired

If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

must be done during the expanding phase, and downgrading of locks (from write-locked

to read-locked) must be done in the shrinking phase.

Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking protocol

because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly

the write_lock(Y) operation follows the unlock(X) operation in T2.

(a)

(c)

Time

T, T
read_lock(Y); read_lock(X);
read_item(Y); read_item{X);
unlock(Y); unlock(X);
write_lock(X); write_lock(Y);
read_item(X); read_item(Y);
X=X+Y, Y=X+Y,
write_item(X); write_item(Y);
unlock(X); unlock(Y);
T, T
read_lock(Y);
read_item(Y);
unlock(Y);
read_lock{X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y=X+Y,;
write_item(Y);
unlock(Y);

write_lock(X);

read_item(X);

X=X+Y;

write_item{X);

unlock(X);

(b) Initial values: X=20, Y=30

Result senal schedule T,
followed by 7,: X=50, Y=80

Resuit of serial schedule T,
followed by T,: X=70, Y=50

Figure 21.3 Transactions that do not
obey two-phase locking (a) Two
transactions T1 and T2 (b) Results of
possible serial schedules of T1 and T2
(c) A nonserializable schedule S that
uses locks

Dr Kumaresh S Assoc Prof CSE(AIML)

27



Database Management System

= |f we enforce two-phase locking, the transactions can be rewritten as T1' and T2’ as shown

in Figure 22.4.

= Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_ (with their

modified order of locking and unlocking operations) under the rules of locking because T1

will issue its write_lock(X) before it unlocks item Y; consequently, when T2_ issues its

read_lock(X), it is forced to wait until T1_ releases the lock by issuing an unlock (X) in the

schedule.

Figure 22.4

Transactions 7, and T,', which are the
same as T, and T in Figure 22.3, but
follow the two-phase locking protocol.

Note that they can produce a deadlock.

T,

read_lock(Y);
read_item(Y');
write_lock({X);
unlock(Y)
read_item(X);
X=X+Y;
write item(X);
unlock(X);

T,

read_lock(X);
read_item(X);
write_lock(Y);
unlock(X)
read_item(Y);
Yo=X+Y;
write_item(Y);
unlock{Y);

= |f every transaction in a schedule follows the two-phase locking protocol, schedule

guaranteed to be serializable

= Two-phase locking may limit the amount of concurrency that can occur in a schedule

= Some serializable schedules will be prohibited by two-phase locking protocol

5.2 Concurrency Control Based on Timestamp Ordering

guarantees serializability using transaction timestamps to order transaction execution

for an equivalent serial schedule

5.2.1 Timestamps

= timestamp is a unique identifier created by the DBMS to identify a transaction.

Typically, timestamp values are assigned in the order in which the transactions are

submitted to the system, so a timestamp can be thought of as the transaction start

time.

Dr Kumaresh S Assoc Prof CSE(AIML)

40




We will refer to the timestamp of transaction T as TS(T).

Concurrency control techniques based on timestamp ordering do not use

locks;hence, deadlocks cannot occur.

Timestamps can be generated in several ways.
One possibility is to use a counter that is incremented each time its value is
assigned to a transaction. The transaction timestamps are numbered 1, 2, 3,

. in this scheme. A computer counter has a finite maximum value, so the

system must periodically reset the counter to zero when no transactions are
executing for some short period of time.

— Another way to implement timestamps is to use the current date/time value of
the system clock and ensure that no two timestamp values are generated
during the same tick of the clock.

5.2.2 The Timestamp Ordering Algorithm

* The idea for this scheme is to order the transactions based on their
timestamps.

» A schedule in which the transactions participate is then serializable, and the
only equivalent serial schedule permitted has the transactions in order of their
timestamp values. This is called timestamp ordering (TO).

* The algorithm must ensure that, for each item accessed by conflicting
Operations in the schedule, the order in which the item is accessed does not
violate the timestamp order.

* To do this, the algorithm associates with each database item X two timestamp

(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp
among all the timestamps of transactions that have successfully
read item X—that is, read_TS(X) = TS(T), where T is the youngest
transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X—
that is, write_ TS(X) = TS(T), where T is the youngest transaction that
has written X successfully.
Basic Timestamp Ordering (TO).
" .Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation,
_the basic TO algorithm compares the timestamp of T with read_TS(X) and write_ TS(X) to
ensure that the timestamp order of transaction execution is not violated.

» |f this order is violated, then transaction T is aborted and resubmitted to the system as a

Dr Kumaresh S Assoc Prof CSE(AIML) 40



new transaction with a new timestamp.
= |f T is aborted and rolled back, any transaction T1 that may have used a value written by T

must also be rolled back.
= Similarly, any transaction T2 that may have used a value written by T1 must also be rolled

back, and so on. This effect is known as cascading rollback and is one of the problems
associated with basic TO, since the schedules produced are not guaranteed to be
recoverable.
* An additional protocol must be enforced to ensure that the schedules are recoverable,
cascadeless, or strict.
= The basic TO algorithm :
* The concurrency control algorithm must check whether conflicting operations violate
the timestamp ordering in the following two cases:
1. Whenever a transaction T issues a write_item(X) operation, the following is
checked:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and
reject the operation. This should be done because some younger transaction
with a timestamp greater than TS(Ty—and hence after T in the timestamp
ordering—has already read or written the value of item X before T had a chance
to write X, thus violating the timestamp ordering.

b.If the condition in part (a) does not occur, then execute the write_item(X)
operation of T and set write_TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is checked:
a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This
should be done because some younger transaction with timestamp greater than
TS(T)—and hence after T in the timestamp ordering—has already written the
value of item X before T had a chance to read X.
b. If write_ TS(X) = TS(T), then execute the read_item(X) operation of T and set
read_TS(X) to the larger of TS(T) and the current read_TS(X).
* Whenever the basic TO algorithm detects two conflicting operations that occur in
. the incorrect order, it rejects the later of the two operations by aborting the
transaction that issued it. The schedules produced by basic TO are hence
guaranteed to be conflict serializable
Striet Timestamp Ordering (TO)
* A variation of basic TO called strict TO ensures that the schedules are both strict

] (for easy recoverability) and (conflict) serializable.

Dr Kumaresh S Assoc Prof CSE(AIML) 40



= |n this variation, a transaction T that issues a read_item(X) or write_item(X) such
that TS(T) > write_TS(X) has its read or write operation delayed until the transaction
T’ that wrote the value of X (hence TS(T’) = write_TS(X)) has committed or aborted.
= To implement this algorithm, it is necessary to simulate the locking of an item X that
has been written by transaction T until T is either committed or aborted. This
algorithm does not cause deadlock, since T waits for T only if TS(T) > TS(T ).

Thomas’s Write Rule

A modification of the basic TO algorithm, known as Thomas’s write rule, does not
enforce conflict serializability, but it rejects fewer write operations by modifying the
checks for the write_item(X) operation as follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than TS(T)—
and hence after T in the timestamp ordering—has already written the value of X.
Thus, we must ignore the write_item(X) operation of T because it is already outdated
and obsolete. Notice that any conflict arising from this situation would be detected by
case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then execute
the write_item(X) operation of T and set write_TS(X) to TS(T).

5.3 Multiversion Concurrency Control Techniques

= Other protocols for concurrency control keep the old values of a data item when the

item is updated. These are known as multiversion concurrency control, because
several versions (values) of an item are maintained
When a transaction requires access to an item, an appropriate version is chosen to

maintain the serializability of the currently executing schedule, if possible.

= The idea is that some read operations that would be rejected in other techniques can

still be accepted by reading an older version of the item to maintain serializability.When
a transaction writes an item, it writes a new version and the old version(s) of the item

are retained

" = An obvious drawback of multiversion techniques is that more storage is heeded to maintain

multiple versions of the database items

Dr Kumaresh S Assoc Prof CSE(AIML)

40



5.3.1 Multiversion Technique Based on Timestamp Ordering

In this method, several versions X1, X2, ..., Xk of each data item X are maintained.

For each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of
transactions that have successfully read version Xi.
2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction
that wrote the value of version Xi.
Whenever a transaction T is allowed to execute a write_item(X) operation, a new
version Xk+1 of item X is created, with both the write_TS(Xk+1) and the
read_TS(Xk+1) setto TS(T)
Correspondingly, when a transaction T is allowed to read the value of version Xi, the
value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the

highest write_ TS(Xi) of all versions of X that is also less than or equal to TS(T),

and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,

create a new version Xj of X with read_TS(X]) = write_TS(X]j) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has

the highest write_ TS(Xi) of all versions of X that is also less than or equal

to

TS(T); then return the value of Xi to transaction T, and set the value of read TS(

Xi) to the larger of TS(T) and the current read_TS(Xi).

5.3.2 Multiversion Two-Phase Locking Using Certify Locks

In this multiple-mode locking scheme, there are three locking modes for an item:

read, write, and certify

Hence, the state of LOCK(X) for an item X can be one of read-locked, writelocked,

certify-locked, or unlocked

We can describe the relationship between read and write locks in the standard

scheme by means of the lock compatibility table shown in Figure 22.6(a)
An entry of Yes means that if a transaction T holds the type of lock specified in the

column header on item X and if transaction T_ requests the type of lock specified

the row header on the same item X, then T_ can obtain the lock because the locking

modes are compatible

Dr Kumaresh S Assoc Prof CSE(AIML)

38



(a) Read Write

Read Yes No
Write No No
(b) Read Write Certify
Read Yes Yes No
Write Yes No No
Certify No No No

Figure 22.6: Lock compatibility tables. (a) A compatibility table for read/write locking scheme.
(b) A compatibility table for read/write/certify locking scheme.

= On the other hand, an entry of No in the table indicates that the locks are not compatible,
so T’ must wait until T releases the lock

= The idea behind multiversion 2PL is to allow other transactions T’ to read an item X
while a single transaction T holds a write lock on X

= This is accomplished by allowing two versions for each item X; one version must always
have been written by some committed transaction

= The second version X' is created when a transaction T acquires a write lock on the item

5.4 Validation (Optimistic) Concurrency Control Techniques

= In optimistic concurrency control techniques, also known as validation or
certification techniques, no checking is done while the transaction is executing

I Inthis scheme, updates in the transaction are not applieddirectly to the database items
until the transaction reaches its end

=  During transaction execution, all updates are applied to local copies of the data items

that are kept for the transaction

= At the end of transaction execution, a validation phase checks whether any of the

transaction’s updates violate serializability.

There are three phases for this concurrency control protocol:

Dr Kumaresh S Assoc Prof CSE(AIML) 40



1. Read phase. A transaction can read values of committed data items from the
database. However, updates are applied only to local copies (versions) of the data
items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be
violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are
applied to the database; otherwise, the updates are discarded and the transaction is

restarted.
= The idea behind optimistic concurrency control is to do all the checks at once; hence,

transaction execution proceeds with a minimum of overhead until the validation phase is
reached

= The techniques are called optimistic because they assume that little interference will
occur and hence that there is no need to do checking during transaction execution.
* The validation phase for Ti checks that, for each such transaction Tj that is either
committed or is in its validation phase, one of the following conditions holds:
1. Transaction Tj completes its write phase before Ti starts its read phase.
2. Ti starts its write phase after Tj completes its write phase, and the read_set
of Ti has no items in common with the write_set of Tj.
3. Both the read_set and write_set of Ti have no items in common with the
write_set of Tj, and Tj completes its read phase before Ti completes its read
phase.

5.5 Granularity of Data Items and Multiple Granularity Locking

= All concurrency control techniques assume that the database is formed of a number
of named data items. A database item could be chosen to be one of the following:
= A database record
m A field value of a database record
m A disk block

m A whole file

=« m The whole database

B The granularity can affect the performance of concurrency control and recovery

5.5.1 Granularity Level Considerations for Locking

1 The size of data items is often called the data item granularity.

= Fine granularity refers to small item sizes, whereas coarse granularity refers to large

Dr Kumaresh S Assoc Prof CSE(AIML) 40



5.5.2

item sizes

The larger the data item size is, the lower the degree of concurrency permitted.

For example, if the data item size is a disk block, a transaction T that needs to lock a
record B must lock the whole disk block X that contains B because a lock is associated
with the whole data item (block). Now, if another transaction S wants to lock a different
record C that happens to reside in the same block X in a conflicting lock mode, it is
forced to wait. If the data item size was a single record, transaction S would be able to
proceed, because it would be locking a different data item (record).

The smaller the data item size is, the more the number of items in the database.
Because every item is associated with a lock, the system will have a larger number of
active locks to be handled by the lock manager. More lock and unlock operations will be
performed, causing a higher overhead

The best item size depends on the types of transactions involved.

If a typical transaction accesses a small number of records, it is advantageous to have
the data item granularity be one record

On the other hand, if a transaction typically accesses many records in the same file, it
may be better to have block or file granularity so that the transaction will consider all
those records as one (or a few) data items

Multiple Granularity Level Locking

Since the best granularity size depends on the given transaction, it seems appropriate
that a database system should support multiple levels of granularity, where the
granularity level can be different for various mixes of transactions

Figure 22.7 shows a simple granularity hierarchy with a database containing two files,
each file containing several disk pages, and each page containing several records.

This can be used to illustrate a multiple granularity level 2PL protocol, where a lock

can be requested at any level

Dr Kumaresh S Assoc Prof CSE(AIML) 40



Database Management System

N
l\?rl?/l
% P
(ﬂ; { fF)

© Ty Figy == Fof =7 Nqpy =7 Mg Fagq = Foqk Fogqy == Toog. " Fogy

Figure 22.7 A granularity hierarchy for illustrating multiple granularity level locking

To make multiple granularity level locking practical, additional types of locks, called
intention locks, are needed
The idea behind intention locks is for a transaction to indicate, along the path from the root

to the desired node, what type of lock (shared or exclusive) it will require from one of the
node’s descendants.

There are three types of intention locks:

1. Intention-shared (IS) indicates that one or more shared locks will be requested on

some descendant node(s).

2. Intention-exclusive (1X) indicates that one or more exclusive locks will be requested on

some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared
mode but that one or more exclusive locks will be requested on some descendant
node(s).

The compatibility table of the three intention locks, and the shared and exclusive locks, is
shown in Figure 22.8.

41



Database Management System

IS Yes Yes Yes
IX Yes Yes No
S Yes No Yes

SIX Yes No No
X No No No

Figure 22.8: Lock compatibility matrix for multiple granularity locking.

The multiple granularity locking (MGL) protocol consists of the following rules:

The lock compatibility (based on Figure 22.8) must be adhered to.
The root of the tree must be locked first, in any mode.

3. Anode N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

5. Atransaction T can lock a node only if it has not unlocked any node (to

enforce the 2PL protocol).

6. Atransaction T can unlock a node, N, only if none of the children of node N

are currently locked by T.

Yes
No
No
No

No

No
No
No
No

No

The multiple granularity level protocol is especially suited when processing a mix of

transactions that include

(1) short transactions that access only a few items (records or fields) and

(2) long transactions that access entire files.

41



