
Dr Kumaresh S Assoc Prof CSE(AIML)

Module 5

Chapter 1: Concurrency Control in Databases

5.0 Introduction to Concurrency Control

5.1 Two-Phase Locking Techniques for Concurrency Control

5.1.1 Types of Locks and System Lock Tables

5.1.2 Guaranteeing Serializability by Two-Phase Locking

5.2 Concurrency Control Based on Timestamp Ordering

5.2.1 Timestamps

5.2.2 The Timestamp Ordering Algorithm

5.3 Multiversion Concurrency Control Techniques

5.3.1 Multiversion Technique Based on Timestamp Ordering

5.3.2 Multiversion Two-Phase Locking Using Certify Locks

5.4 Validation (Optimistic) Concurrency Control Techniques

5.5 Granularity of Data Items and Multiple Granularity Locking

5.5.1 Granularity Level Considerations for Locking

5.5.2 Multiple Granularity Level Locking

[BCS403]

Dr Kumaresh S Assoc Prof CSE(AIML)

Chapter 1: Concurrency Control in Databases

5.0 Introduction to Concurrency Control

Purpose of Concurrency Control

To enforce Isolation (through mutual exclusion) among conflicting transactions.

To preserve database consistency through consistency preserving execution of

transactions.

To resolve read-write and write-write conflicts.

 Example:

 In concurrent execution environment if T1 conflicts with T2 over a data item A, then

the existing concurrency control decides if T1 or T2 should get the A and if the other

transaction is rolled-back or waits.

5.1 Two-Phase Locking Techniques for Concurrency Control

 The concept of locking data items is one of the main techniques used for controlling the

concurrent execution of transactions.

 A lock is a variable associated with a data item in the database. Generally there is a lock

for each data item in the database.

 A lock describes the status of the data item with respect to possible operations that can be

applied to that item.

 It is used for synchronizing the access by concurrent transactions to the database items.

 A transaction locks an object before using it

 When an object is locked by another transaction, the requesting transaction must wait

5.1.1 Types of Locks and System Lock Tables

1. Binary Locks

 A binary lock can have two states or values: locked and unlocked (or 1

and 0).

 If the value of the lock on X is 1, item X cannot be accessed by a database

operation that requests the item

[BCS403]

Dr Kumaresh S Assoc Prof CSE(AIML)

lock_item(X):

B: if LOCK(X) = 0 (* item is unlocked *)

then LOCK(X)

else

begin

wait (until LOCK(X) = 0

and the lock manager wakes up the transaction);

go to B

end;

unlock_item(X):

LOCK(X

if any transactions are waiting

then wakeup one of the waiting transactions

If the value of the lock on X is 0, the item can be accessed when

requested, and the lock value is changed to 1

We refer to the current value (or state) of the lock associated with item X

as lock(X).

Two operations, lock_item and unlock_item, are used with binary

locking.

A transaction requests access to an item X by first issuing a lock_item(X)

operation

If LOCK(X) = 1, the transaction is forced to wait.

If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the

transaction is allowed to access item X

When the transaction is through using the item, it issues an

unlock_item(X) operation, which sets LOCK(X) back to 0 (unlocks the

item) so that X may be accessed by other transactions

Hence, a binary lock enforces mutual exclusion on the data item.

Fig: 2.1.1 Lock and unlock operations for binary licks.

Dr Kumaresh S Assoc Prof CSE(AIML)

 The lock_item and unlock_item operations must be implemented as indivisible units that

is, no interleaving should be allowed once a lock or unlock operation is started until the

operation terminates or the transaction waits

 The wait command within the lock_item(X) operation is usually implemented by putting

the transaction in a waiting queue for item X until X is unlocked and the transaction can

be granted access to it

 Other transactions that also want to access X are placed in the same queue.Hence, the

wait command is considered to be outside the lock_item operation.

 It is quite simple to implement a binary lock; all that is needed is a binary-valued

variable, LOCK, associated with each data item X in the database

 In its simplest form, each lock can be a record with three fields: <Data_item_name,

LOCK, Locking_transaction> plus a queue for transactions that are waiting to access the

item

 If the simple binary locking scheme described here is used, every transaction must obey

the following rules:

1. A transaction T must issue the operation lock_item(X) before any

read_item(X) or write_item(X) operations are performed in T.

2. A transaction T must issue the operation unlock_item(X) after all

read_item(X) and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds the lock

on item X.

4. A transaction T will not issue an unlock_item(X) operation unless it already holds

the lock on item X.

2. Shared/Exclusive (or Read/Write) Locks

 binary locking scheme is too restrictive for database items because at most, one

transaction can hold a lock on a given item

 should allow several transactions to access the same item X if they all access X for

reading purposes only

 if a transaction is to write an item X, it must have exclusive access to X

 For this purpose, a different type of lock called a multiple-mode lock is used

 In this scheme called shared/exclusive or read/write locks there are three locking

operations: read_lock(X), write_lock(X), and unlock(X).

Dr Kumaresh S Assoc Prof CSE(AIML)

A read-locked item is also called share-locked because other transactions are allowed

to read the item, whereas a write-locked item is called exclusive-locked because a

single transaction exclusively holds the lock on the item

Method to implement read/write lock is to

- keep track of the number of transactions that hold a shared (read) lock

on an item in the lock table

- Each record in the lock table will have four fields:

<Data_item_name, LOCK, No_of_reads, Locking_transaction(s)>.

If LOCK(X)=write-locked, the value of locking_transaction(s) is a single transaction that

holds the exclusive (write) lock on X

If LOCK(X)=read-locked, the value of locking transaction(s) is a list of one or more

transactions that hold the shared (read) lock on X.

Dr Kumaresh S Assoc Prof CSE(AIML)

 When we use the shared/exclusive locking scheme, the system must enforce the following

rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any

read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X)

operation is performed in T.

3 A transaction T must issue the operation unlock(X) after all read_item(X) and

write_item(X) operations are completed in T.3

4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared)

lock or a write (exclusive) lock on item X.

Conversion of Locks

 A transaction that already holds a lock on item X is allowed under certain conditions to

convert the lock from one locked state to another

 For example, it is possible for a transaction T to issue a read_lock(X) and then later to

upgrade the lock by issuing a write_lock(X) operation

- If T is the only transaction holding a read lock on X at the time it issues

the write_lock(X) operation, the lock can be upgraded;otherwise, the

transaction must wait

5.1.2 Guaranteeing Serializability by Two-Phase Locking

Dr Kumaresh S Assoc Prof CSE(AIML)

A transaction is said to follow the two-phase locking protocol if all locking operations

(read_lock, write_lock) precede the first unlock operation in the transaction

Such a transaction can be divided into two phases:

 Expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released

 Shrinking (second) phase, during which existing locks can be released but no

new locks can be acquired

If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked)

must be done during the expanding phase, and downgrading of locks (from write-locked

to read-locked) must be done in the shrinking phase.

Transactions T1 and T2 in Figure 22.3(a) do not follow the two-phase locking protocol

because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly

the write_lock(Y) operation follows the unlock(X) operation in T2.

Figure 21.3 Transactions that do not

obey two-phase locking (a) Two

transactions T1 and T2 (b) Results of

possible serial schedules of T1 and T2

(c) A nonserializable schedule S that

uses locks

[21CS53]

Dr Kumaresh S Assoc Prof CSE(AIML)

If we enforce two-phase locking, the transactions can be rewritten as T T

in Figure 22.4.

Now, the schedule shown in Figure 22.3(c) is not permitted for T1_ and T2_ (with their

modified order of locking and unlocking operations) under the rules of locking because T1_

will issue its write_lock(X) before it unlocks item Y; consequently, when T2_ issues its

read_lock(X), it is forced to wait until T1_ releases the lock by issuing an unlock (X) in the

schedule.

 If every transaction in a schedule follows the two-phase locking protocol, schedule

guaranteed to be serializable

 Two-phase locking may limit the amount of concurrency that can occur in a schedule

 Some serializable schedules will be prohibited by two-phase locking protocol

5.2 Concurrency Control Based on Timestamp Ordering

guarantees serializability using transaction timestamps to order transaction execution

for an equivalent serial schedule

5.2.1 Timestamps

 timestamp is a unique identifier created by the DBMS to identify a transaction.

Typically, timestamp values are assigned in the order in which the transactions are

submitted to the system, so a timestamp can be thought of as the transaction start

time.

Dr Kumaresh S Assoc Prof CSE(AIML)

We will refer to the timestamp of transaction T as TS(T).

Concurrency control techniques based on timestamp ordering do not use

locks;hence, deadlocks cannot occur.

Timestamps can be generated in several ways.

One possibility is to use a counter that is incremented each time its value is

assigned to a transaction. The transaction timestamps are numbered 1, 2, 3,

... in this scheme. A computer counter has a finite maximum value, so the

system must periodically reset the counter to zero when no transactions are

executing for some short period of time.

 Another way to implement timestamps is to use the current date/time value of

the system clock and ensure that no two timestamp values are generated

during the same tick of the clock.

5.2.2 The Timestamp Ordering Algorithm

 The idea for this scheme is to order the transactions based on their

timestamps.

 A schedule in which the transactions participate is then serializable, and the

only equivalent serial schedule permitted has the transactions in order of their

timestamp values. This is called timestamp ordering (TO).

 The algorithm must ensure that, for each item accessed by conflicting

Operations in the schedule, the order in which the item is accessed does not

violate the timestamp order.

 To do this, the algorithm associates with each database item X two timestamp

(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp

among all the timestamps of transactions that have successfully

read item X that is, read_TS(X) = TS(T), where T is the youngest

transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X

that is, write_TS(X) = TS(T), where T is the youngest transaction that

has written X successfully.

Basic Timestamp Ordering (TO).

 Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation,

the basic TO algorithm compares the timestamp of T with read_TS(X) and write_TS(X) to

ensure that the timestamp order of transaction execution is not violated.

 If this order is violated, then transaction T is aborted and resubmitted to the system as a

Dr Kumaresh S Assoc Prof CSE(AIML)

new transaction with a new timestamp.

 If T is aborted and rolled back, any transaction T1 that may have used a value written by T

must also be rolled back.
 Similarly, any transaction T2 that may have used a value written by T1 must also be rolled

back, and so on. This effect is known as cascading rollback and is one of the problems

associated with basic TO, since the schedules produced are not guaranteed to be

recoverable.

 An additional protocol must be enforced to ensure that the schedules are recoverable,

cascadeless, or strict.

 The basic TO algorithm :

 The concurrency control algorithm must check whether conflicting operations violate

the timestamp ordering in the following two cases:

1. Whenever a transaction T issues a write_item(X) operation, the following is

checked:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and

reject the operation. This should be done because some younger transaction

with a timestamp greater than TS(T) and hence after T in the timestamp

ordering has already read or written the value of item X before T had a chance

to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)

operation of T and set write_TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following is checked:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This

should be done because some younger transaction with timestamp greater than

TS(T) and hence after T in the timestamp ordering has already written the

value of item X before T had a chance to read X.

b. If write_TS(X T), then execute the read_item(X) operation of T and set

read_TS(X) to the larger of TS(T) and the current read_TS(X).

 Whenever the basic TO algorithm detects two conflicting operations that occur in

the incorrect order, it rejects the later of the two operations by aborting the

transaction that issued it. The schedules produced by basic TO are hence

guaranteed to be conflict serializable

Strict Timestamp Ordering (TO)

 A variation of basic TO called strict TO ensures that the schedules are both strict

(for easy recoverability) and (conflict) serializable.

Dr Kumaresh S Assoc Prof CSE(AIML)

In this variation, a transaction T that issues a read_item(X) or write_item(X) such

that TS(T) > write_TS(X) has its read or write operation delayed until the transaction

T that wrote the value of X (hence TS(T) = write_TS(X)) has committed or aborted.

To implement this algorithm, it is necessary to simulate the locking of an item X that

has been written by transaction T until T is either committed or aborted. This

algorithm does not cause deadlock, since T waits for T only if TS(T) > TS(T_).

 A modification of the basic TO algorithm, known as , does not

enforce conflict serializability, but it rejects fewer write operations by modifying the

checks for the write_item(X) operation as follows:

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue

processing. This is because some transaction with timestamp greater than TS(T)

and hence after T in the timestamp ordering has already written the value of X.

Thus, we must ignore the write_item(X) operation of T because it is already outdated

and obsolete. Notice that any conflict arising from this situation would be detected by

case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then execute

the write_item(X) operation of T and set write_TS(X) to TS(T).

5.3 Multiversion Concurrency Control Techniques

 Other protocols for concurrency control keep the old values of a data item when the

item is updated. These are known as multiversion concurrency control, because

several versions (values) of an item are maintained

 When a transaction requires access to an item, an appropriate version is chosen to

maintain the serializability of the currently executing schedule, if possible.

 The idea is that some read operations that would be rejected in other techniques can

still be accepted by reading an older version of the item to maintain serializability.When

a transaction writes an item, it writes a new version and the old version(s) of the item

are retained

 An obvious drawback of multiversion techniques is that more storage is needed to maintain

multiple versions of the database items

Dr Kumaresh S Assoc Prof CSE(AIML)

5.3.1 Multiversion Technique Based on Timestamp Ordering

 In this method, several versions X1, X2, ..., Xk of each data item X are maintained.

 For each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of

transactions that have successfully read version Xi.

2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction

that wrote the value of version Xi.

 Whenever a transaction T is allowed to execute a write_item(X) operation, a new

version Xk+1 of item X is created, with both the write_TS(Xk+1) and the

read_TS(Xk+1) set to TS(T)

 Correspondingly, when a transaction T is allowed to read the value of version Xi, the

value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

 To ensure serializability, the following rules are used:

1. If transaction T issues a write_item(X) operation, and version i of X has the

highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T),

and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise,

create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has

the highest write_TS(Xi) of all versions of X that is also less than or equal to

TS(T); then return the value of Xi to transaction T, and set the value of read_TS(

Xi) to the larger of TS(T) and the current read_TS(Xi).

5.3.2 Multiversion Two-Phase Locking Using Certify Locks

 In this multiple-mode locking scheme, there are three locking modes for an item:

read, write, and certify

Hence, the state of LOCK(X) for an item X can be one of read-locked, writelocked,

certify-locked, or unlocked

We can describe the relationship between read and write locks in the standard

scheme by means of the lock compatibility table shown in Figure 22.6(a)

An entry of Yes means that if a transaction T holds the type of lock specified in the

column header on item X and if transaction T_ requests the type of lock specified i

the row header on the same item X, then T_ can obtain the lock because the locking

modes are compatible

Dr Kumaresh S Assoc Prof CSE(AIML)

Figure 22.6: Lock compatibility tables. (a) A compatibility table for read/write locking scheme.

(b) A compatibility table for read/write/certify locking scheme.

 On the other hand, an entry of No in the table indicates that the locks are not compatible,

so T must wait until T releases the lock

 The idea behind multiversion 2PL is to allow other transactions T X

while a single transaction T holds a write lock on X

 This is accomplished by allowing two versions for each item X; one version must always

have been written by some committed transaction

 The second version X is created when a transaction T acquires a write lock on the item

5.4 Validation (Optimistic) Concurrency Control Techniques

 In optimistic concurrency control techniques, also known as validation or

certification techniques, no checking is done while the transaction is executing

 In this scheme, updates in the transaction are not applieddirectly to the database items

until the transaction reaches its end

 During transaction execution, all updates are applied to local copies of the data items

that are kept for the transaction

 At the end of transaction execution, a validation phase checks whether any of the

.

 There are three phases for this concurrency control protocol:

Dr Kumaresh S Assoc Prof CSE(AIML)

1. Read phase. A transaction can read values of committed data items from the

database. However, updates are applied only to local copies (versions) of the data

items kept in the transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be

violated if the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are

applied to the database; otherwise, the updates are discarded and the transaction is

restarted.

 The idea behind optimistic concurrency control is to do all the checks at once; hence,

transaction execution proceeds with a minimum of overhead until the validation phase is

reached

 The techniques are called optimistic because they assume that little interference will

occur and hence that there is no need to do checking during transaction execution.

 The validation phase for Ti checks that, for each such transaction Tj that is either

committed or is in its validation phase, one of the following conditions holds:

1. Transaction Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the read_set

of Ti has no items in common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the

write_set of Tj, and Tj completes its read phase before Ti completes its read

phase.

5.5 Granularity of Data Items and Multiple Granularity Locking

 All concurrency control techniques assume that the database is formed of a number

of named data items. A database item could be chosen to be one of the following:

 A database record

 A field value of a database record

 A disk block

 A whole file

 The whole database

 The granularity can affect the performance of concurrency control and recovery

5.5.1 Granularity Level Considerations for Locking

 The size of data items is often called the data item granularity.

 Fine granularity refers to small item sizes, whereas coarse granularity refers to large

Dr Kumaresh S Assoc Prof CSE(AIML)

item sizes

 The larger the data item size is, the lower the degree of concurrency permitted.

 For example, if the data item size is a disk block, a transaction T that needs to lock a

record B must lock the whole disk block X that contains B because a lock is associated

with the whole data item (block). Now, if another transaction S wants to lock a different

record C that happens to reside in the same block X in a conflicting lock mode, it is

forced to wait. If the data item size was a single record, transaction S would be able to

proceed, because it would be locking a different data item (record).

 The smaller the data item size is, the more the number of items in the database.

Because every item is associated with a lock, the system will have a larger number of

active locks to be handled by the lock manager. More lock and unlock operations will be

performed, causing a higher overhead

 The best item size depends on the types of transactions involved.

 If a typical transaction accesses a small number of records, it is advantageous to have

the data item granularity be one record

 On the other hand, if a transaction typically accesses many records in the same file, it

may be better to have block or file granularity so that the transaction will consider all

those records as one (or a few) data items

5.5.2 Multiple Granularity Level Locking

Since the best granularity size depends on the given transaction, it seems appropriate

that a database system should support multiple levels of granularity, where the

granularity level can be different for various mixes of transactions

Figure 22.7 shows a simple granularity hierarchy with a database containing two files,

each file containing several disk pages, and each page containing several records.

This can be used to illustrate a multiple granularity level 2PL protocol, where a lock

can be requested at any level

Figure 22.7 A granularity hierarchy for illustrating multiple granularity level locking

To make multiple granularity level locking practical, additional types of locks, called

intention locks, are needed

The idea behind intention locks is for a transaction to indicate, along the path from the root

to the desired node, what type of lock (shared or exclusive) it will require from one of the

There are three types of intention locks:

1. Intention-shared (IS) indicates that one or more shared locks will be requested on

some descendant node(s).

2. Intention-exclusive (IX) indicates that one or more exclusive locks will be requested on

some descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared

mode but that one or more exclusive locks will be requested on some descendant

node(s).

The compatibility table of the three intention locks, and the shared and exclusive locks, is

shown in Figure 22.8.

Figure 22.8: Lock compatibility matrix for multiple granularity locking.

The multiple granularity locking (MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 22.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent

node N is already locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the

parent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to

enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N

are currently locked by T.

The multiple granularity level protocol is especially suited when processing a mix of

transactions that include

(1) short transactions that access only a few items (records or fields) and

(2) long transactions that access entire files.

