CECS SCHEME

2008 USN

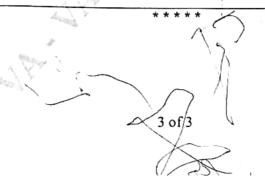
BCS405A

Fourth Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100


Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	az	Define Tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology by constructing the truth table.	6	L1	COI
-	b/	Prove the following using the laws of logic: $P \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$	7	L2	CO1
	C,	Give i) Direct proof ii) indirect proof iii) proof by contradiction for the following statement: "If n is an odd integer then n + 9 is an even integer". OR	7	L3	CO1
Q.2	а.	Test whether the following arguments are valid: $p \rightarrow q$ $r \rightarrow s$ $\frac{\sim q \vee \sim s}{\therefore \sim (p \wedge r)}$	6	L2	CO1
	b.	Write the following argument in symbolic form and then establish the validity. If a triangle has two equal sides, then it is isosceles. If a triangle is isosceles, then it has two equal angles. The triangle ABC does not have two equal angles. ABC does not have two equal sides.	7	L1	COI
	c.	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement: i) $\exists x \exists y [xy = 1]$ ii) $\exists x \forall y [xy = 1]$ iii) $\forall x \exists y [xy = 1]$ iv) $\exists x \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x \exists y [(3x - y = 7) \land (2x + 4y = 3)]$	7	L2	COI
		Module – 2			
Q.3	a.	Prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n+1)(2n-1)}{3}$ by mathematical Induction.	6	L2	CO2
,		1 of 3	•		

			n.co		
				BCS	34
	b.	Prove that every positive integer $n \ge 24$ can be written as a sum of 5's and / or 7's.	7	L3	c
	c.	Obtain a recursive definition for the sequence $\{a_n\}$ in each of the following cases: i) $a_n = 5n$ ii) $a_n = 3n + 7$ iii) $a_n = 2 - (-1)^n$	7	L3	CO2
		OR			-
Q.4	a.	Prove that for any positive integer n_n , $\sum_{i=1}^{n} \frac{F_{i-1}}{2^i} = 1 - \frac{F_{n+2}}{2^n}$, F_n denote the fibonacci number.	6	L2	CO2
			_	_	-
	b.	How many arrangement are there for all the letters in the word "SOCIOLOGICAL". In how many of these arrangements. i) A and G are adjacent ii) All vowels are adjacent.	7	L2	CO2
	c.	Determine the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a+2b-3c+2d+5)^{16}$.	7	L2	CO2
		Module – 3			T ====
Q.5	a.	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by a^Rb if and only if "a is a multiple of b". Write down the relation R, relation matrix $M(R)$ and draw its digraph. List out its indegree and out degree.	6	L2	CO3
	b.	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If (gof) $f(x) = 9x^2 - 9x + 3$ determine a and b.	7	L3	CO3
	c.	State Pigeon hole principle. Show that if $n + 1$ numbers are chosen from 1 to 2n then at least one pair add to $2n + 1$.	7	L2	CO3
		OR			
Q.6	a.	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5, & \text{if } x > 0 \\ 1 - 3x, & \text{if } x \le 0 \end{cases}$ find $f(-1)$, $f(5/3)$, $f(0)$, $f(-1)$	6	L1	CO3
	b.	Let f, g, h be functions from Z to Z defined by $f(x) = x - 1$, $g(x) = 3x$, $h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}$ Determine $(fo(goh))(x)$, $((fog)oh)(x)$ and verify that $fo(goh) = (fog)oh$.	7	L2	CO3
	c.	Draw the Hasse (POSET) diagram which represents positive divisors of 36.	7	L2	CO3
		Module – 4			
Q.7	a.	In how many ways 5 number of a's, 4 number of b's and 3 number of c's, can be arranged so that all the identical letters are not in a single block.	6	L3	CO4
		2 of 3		5	
			_	_	

S. S	7 <u> </u>		
, c	,	b.	For
_ /			one
Q			at 7
			at T
//	1		

1				BCS4		
	b.	Four persons P_1 , P_2 , P_3 , P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not sit at T_1 or T_2 , P_2 will not sit at T_2 , P_3 will not sit at T_3 or T_4 and T_5 will not sit at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.		L2	CO4	
	c. Solve the recurrence relation $a_n = na_{n-1}$ where $n \ge 1$ and $a_0 = 1$.				CO4	
	OR OR					
Q.8	a.	In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?	6	L2	CO4	
	b.	Find the rook polynomial for the 3 * 3 board by using the expansion formula.	7	L2	CO4	
	c.	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	7	L2	CO4	
		Module – 5				
Q.9	a.	Define Group. Show that fourth roots of unity is an abelian group under ⊗.	6	L2	CO5	
	b.	Define Klein 4 group. Verify $A = \{1, 3, 5, 7\}$ is a Klein 4 group under \otimes_8 .			CO5	
	c.	State and prove Lagrange's theorem.	7	L2	CO5	
		OR		•		
Q.10	a.	If H, K are subgroups of a group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G?	6	L2	CO5	
	b.	Define cyclic group and show that $(G, *)$ whose multiplication table is as given below is cyclic. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L2	CO5	
	c.	Prove that the only left coset of a subgroup H of a group G which is also a subgroup of G is H itself.	7	L2	CO5	

